怎么用极限的ε-N定义证明n→∞ 时lim(根号n^+a^)/n=1
展开全部
用极限的ε-N语言定义证明n→∞ lim[√(n²+a)]/n=1?
解:不论预先给定的正数ε怎么小,由∣[√(n²+a)]/n-1∣=∣[√(n²+a)-n]/n∣
=∣a/n[√(n²+a)+n]∣<∣a/n∣<ε,得n>∣a/ε∣,可知存在正整数N=[∣a/ε∣],
当n≧N时不等式∣[√(n²+a)]/n-1∣<ε;故n→∞ lim[√(n²+a)]/n=1。
解:不论预先给定的正数ε怎么小,由∣[√(n²+a)]/n-1∣=∣[√(n²+a)-n]/n∣
=∣a/n[√(n²+a)+n]∣<∣a/n∣<ε,得n>∣a/ε∣,可知存在正整数N=[∣a/ε∣],
当n≧N时不等式∣[√(n²+a)]/n-1∣<ε;故n→∞ lim[√(n²+a)]/n=1。
更多追问追答
追问
应该是a^,不是a
而且la^/n【根号(n^+a^)+n】|<la/nl这个过程是怎么算的
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询