求y=sinx-cosx sinxcosx的值域
3个回答
展开全部
题目是y=sinx-cosx+sinxcosx是吧。
解:
y=sinx-cosx+sinxcosx
=√2sin(x-π/4)+(1/2)sin(2x)
=√2sin(x-π/4)+(1/2)cos(π/2-2x)
=√2sin(x-π/4)+(1/2)cos[2(x-π/4)]
=√2sin(x-π/4)+(1/2)[1-2sin²(x-π/4)]
=-sin²(x-π/4)+√2sin(x-π/4)+1/2
=-[sin(x-π/4)-√2/2]²+1
-1≤sin(x-π/4)≤1
sin(x-π/4)=√2/2时,有ymax=1
sin(x-π/4)=-1时,有ymin=-(2√2+1)/2
函数y的值域为[-(2√2+1)/2,1]
解题方法说明:
通过三角恒等变形,化为二次函数的形式,进而求得函数最大、最小值,最终得到函数值域。
解:
y=sinx-cosx+sinxcosx
=√2sin(x-π/4)+(1/2)sin(2x)
=√2sin(x-π/4)+(1/2)cos(π/2-2x)
=√2sin(x-π/4)+(1/2)cos[2(x-π/4)]
=√2sin(x-π/4)+(1/2)[1-2sin²(x-π/4)]
=-sin²(x-π/4)+√2sin(x-π/4)+1/2
=-[sin(x-π/4)-√2/2]²+1
-1≤sin(x-π/4)≤1
sin(x-π/4)=√2/2时,有ymax=1
sin(x-π/4)=-1时,有ymin=-(2√2+1)/2
函数y的值域为[-(2√2+1)/2,1]
解题方法说明:
通过三角恒等变形,化为二次函数的形式,进而求得函数最大、最小值,最终得到函数值域。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询