已知∫xf(x)dx=arcsinx+C,求∫1/f(x)dx

答案是-1/3(1-x^3)^2+C我需要详细过程!谢谢!!!... 答案是-1/3(1-x^3)^2+C

我需要详细过程!谢谢!!!
展开
完美的幸福1999
2011-01-28
知道答主
回答量:7
采纳率:0%
帮助的人:3.9万
展开全部
解:∵(arcsinx)'=xf(x)=(1-x^2)^ (-1/2)
∴f(x)=[x (1-x^2)^ 1/2] ^(-1)
1/f(x)=x(1-x^2) ^1/2
∫1/f(x)dx =∫x(1-x^2) ^1/2dx
=-1/2∫(1-x^2)^ 1/2 d(1-x^2)
= -1/3(1-x^2) ^(3/2) + C
tllau38
高粉答主

2011-01-28 · 关注我不会让你失望
知道顶级答主
回答量:8.7万
采纳率:73%
帮助的人:2亿
展开全部
y = arcsinx
siny = x
cosy dy/dx = 1
dy/dx = 1/cosy = 1/ √(1-x^2)

∫xf(x)dx=arcsinx+C
d/dx(∫xf(x)dx) = d/dx(arcsinx+C)
=> xf(x) = 1/√(1-x^2)
1/f(x) = x √(1-x^2)
∫1/f(x)dx = ∫ x √(1-x^2) dx
= -(1/2)∫ √(1-x^2) d(1-x^2)
= -1/3(1-x^2)^(3/2) + C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式