已知∫xf(x)dx=arcsinx+C,求∫1/f(x)dx
2个回答
展开全部
y = arcsinx
siny = x
cosy dy/dx = 1
dy/dx = 1/cosy = 1/ √(1-x^2)
∫xf(x)dx=arcsinx+C
d/dx(∫xf(x)dx) = d/dx(arcsinx+C)
=> xf(x) = 1/√(1-x^2)
1/f(x) = x √(1-x^2)
∫1/f(x)dx = ∫ x √(1-x^2) dx
= -(1/2)∫ √(1-x^2) d(1-x^2)
= -1/3(1-x^2)^(3/2) + C
siny = x
cosy dy/dx = 1
dy/dx = 1/cosy = 1/ √(1-x^2)
∫xf(x)dx=arcsinx+C
d/dx(∫xf(x)dx) = d/dx(arcsinx+C)
=> xf(x) = 1/√(1-x^2)
1/f(x) = x √(1-x^2)
∫1/f(x)dx = ∫ x √(1-x^2) dx
= -(1/2)∫ √(1-x^2) d(1-x^2)
= -1/3(1-x^2)^(3/2) + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询