高等数学,求定积分
2个回答
展开全部
令t=-x,则dx=-dt
∫(-π,π)sin^4x/(1+e^x)dx
=∫(π,-π)sin^4t/[1+e^(-t)](-dt)
=∫(-π,π)sin^4t*e^t/(e^t+1)dt
所以2*∫(-π,π)sin^4x/(1+e^x)dx
=∫(-π,π)sin^4x/(1+e^x)dx+∫(-π,π)sin^4t*e^t/(e^t+1)dt
=∫(-π,π)sin^4xdx
=2∫(0,π)sin^4xdx
=(1/2)*∫(0,π)(1-cos2x)^2dx
=(1/2)*∫(0,π)[1-2cos2x+cos^2(2x)]dx
=(1/2)*∫(0,π)[1-2cos2x+(1/2)*(1+cos4x)]dx
=(1/2)*[3x/2-sin2x+(1/8)*sin4x]|(0,π)
=3π/4
所以原式=3π/8
∫(-π,π)sin^4x/(1+e^x)dx
=∫(π,-π)sin^4t/[1+e^(-t)](-dt)
=∫(-π,π)sin^4t*e^t/(e^t+1)dt
所以2*∫(-π,π)sin^4x/(1+e^x)dx
=∫(-π,π)sin^4x/(1+e^x)dx+∫(-π,π)sin^4t*e^t/(e^t+1)dt
=∫(-π,π)sin^4xdx
=2∫(0,π)sin^4xdx
=(1/2)*∫(0,π)(1-cos2x)^2dx
=(1/2)*∫(0,π)[1-2cos2x+cos^2(2x)]dx
=(1/2)*∫(0,π)[1-2cos2x+(1/2)*(1+cos4x)]dx
=(1/2)*[3x/2-sin2x+(1/8)*sin4x]|(0,π)
=3π/4
所以原式=3π/8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询