参数方程怎么求弧微分

 我来答
教育小百科达人
2020-12-25 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:466万
展开全部

在关于t的参数方程x=x(t),y=y(t,z=z(t)中,弧微分ds=√[x`(t)²+y`(t)²+z`(t)²dt。

推导过程如下:

根据弧微分的定义可知,ds=√d²x+d²y+d²z……式(1)

根据一元函数性质可知dx=x`(t)dt,dy=y`(t)dt,dz=z`(t)dt……式(2)

将(2)带入到(1)中有,ds=√[x`(t)²+y`(t)²+z`(t)²]dt。

弧微分一般是在第一类曲线积分中使用,即在已知曲线线密度u(x,y,z)的情况下,计算曲线的质量,此时积分可以写成M=∫u(x,y,z)ds。

然后利用参数方程转化成对t的一重积分∫u[x(t),y(t),z(t)]*√[x`(t)²+y`(t)²+z`(t)²dt,即可进行求解。

扩展资料:

质的坐标x,y与时间t之间有函数关系x=f(t),y=g(t),这两个函数式中的变量t,相对于表示质点的几何位置的变量x,y来说,就是一个“参与的变量”。

这类实际问题中的参变量,被抽象到数学中,就成了参数。我们所学的参数方程中的参数,其任务在于沟通变量x,y及一些常量之间的联系,为研究曲线的形状和性质提供方便。

用参数方程描述运动规律时,常常比用普通方程更为直接简便。对于解决求最大射程、最大高度、飞行时间或轨迹等一系列问题都比较理想。有些重要但较复杂的曲线,建立它们的普通方程比较困难,甚至不可能,列出的方程既复杂又不易理解。

东莞大凡
2024-11-14 广告
标定板认准大凡光学科技,专业生产研发厂家,专业从事光学影像测量仪,光学投影测量仪.光学三维测量仪,光学二维测量仪,光学二维测量仪,光学三维测量仪,光学二维测量仪.的研发生产销售。东莞市大凡光学科技有限公司创立于 2018 年,公司总部坐落于... 点击进入详情页
本回答由东莞大凡提供
帐号已注销
2020-12-28 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:162万
展开全部

在关于t的参数方程x=x(t),y=y(t,z=z(t)中,弧微分ds=√[x`(t)²+y`(t)²+z`(t)²dt。

根据弧微分的定义可知:

ds=√d²x+d²y+d²z……式(1)

根据一元函数性质可知:

dx=x`(t)dt,dy=y`(t)dt,dz=z`(t)dt……式(2)

将(2)带入到(1)中有,ds=√[x`(t)²+y`(t)²+z`(t)²]dt。。

扩展资料:

弧微分是用一条线段的长度来近似代表一段弧的长度。设函数f(x)在区间(a,b)内具有连续导数,在曲线Y=f(x)上取定点Mo(xo,f(xo))作为计算曲线弧长的基点,M(x,y)是曲线上任意一点。

规定:

(1)自变量x增大的方向为曲线的正向;

(2)当弧段MoM的方向与曲线正向一致时,M0M的弧长S>0;相反时,S<0。

参考资料来源:百度百科-弧微分

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友25e987c1d9
高粉答主

推荐于2017-12-15 · 说的都是干货,快来关注
知道大有可为答主
回答量:3903
采纳率:97%
帮助的人:1944万
展开全部

参数方程求导后带入弧微分公式即可,参考下图:


本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式