如图所示,O的直径AB的长为10,弦AC长为6,∠ACB的平分线交⊙O于D,则CD长为( ) A. 7 B. 7√2 C. 8√2 D
展开全部
解析:作DF⊥CA,交CA的延长线于点F,作DG⊥CB于点G,连接DA,DB.由CD平分∠ACB,根据角平分线的性质得出DF=DG,由HL证明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,从而求出CD=7 .
解答:解:作DF⊥CA,交CA的延长线于点F,作DG⊥CB于点G,连接DA,DB.
∵CD平分∠ACB,
∴DF=DG,弧AD=弧BD,
∴DA=DB.
∵∠AFD=∠BGD=90°,
∴△AFD≌△BGD,
∴AF=BG.
易证△CDF≌△CDG,
∴CF=CG.
∵AC=6,BC=8,
∴AF=1,
∴CF=7,
∵△CDF是等腰直角三角形,
∴CD=7 .
故选B
解答:解:作DF⊥CA,交CA的延长线于点F,作DG⊥CB于点G,连接DA,DB.
∵CD平分∠ACB,
∴DF=DG,弧AD=弧BD,
∴DA=DB.
∵∠AFD=∠BGD=90°,
∴△AFD≌△BGD,
∴AF=BG.
易证△CDF≌△CDG,
∴CF=CG.
∵AC=6,BC=8,
∴AF=1,
∴CF=7,
∵△CDF是等腰直角三角形,
∴CD=7 .
故选B
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询