矩阵的初等变换
3个回答
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
在线性代数中,矩阵的初等变换是指以下三种变换类型 :
(1) 交换矩阵的两行(列);
(2) 以一个非零数k乘矩阵的某一行(列);
(3) 把矩阵的某一行(列)的z倍加于另一行(列)上。
容易看出,这三种初等变换都不会改变一个方阵A的行列式的非零性,所以如果一个矩阵是方阵,我们可以通过看初等变换后的矩阵是否可逆,来判断原矩阵是否可逆。当然,这只是矩阵初等变换的一个小小的应用,它在线性代数中的更重要的应用主要体现在以下几点:求矩阵的秩,求向量组的极大无关组、秩,求解线性方程组,求多项式的最大公因式等。
(1) 交换矩阵的两行(列);
(2) 以一个非零数k乘矩阵的某一行(列);
(3) 把矩阵的某一行(列)的z倍加于另一行(列)上。
容易看出,这三种初等变换都不会改变一个方阵A的行列式的非零性,所以如果一个矩阵是方阵,我们可以通过看初等变换后的矩阵是否可逆,来判断原矩阵是否可逆。当然,这只是矩阵初等变换的一个小小的应用,它在线性代数中的更重要的应用主要体现在以下几点:求矩阵的秩,求向量组的极大无关组、秩,求解线性方程组,求多项式的最大公因式等。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询