一个函数不连续就一定不可导,为什么?
导数的定义公式
x=x0点的导数的定义公式
lim(x→x0)[f(x)-f(x0)]/(x-x0)
如果函数在x0点可导,那么这个极限必须存在,即等于一个有限常数,设为a
即lim(x→x0)[f(x)-f(x0)]/(x-x0)=a
而f(x)-f(x0)=(x-x0)[f(x)-f(x0)]/(x-x0)
所以lim(x→x0)[f(x)-f(x0)]
=lim(x→x0)(x-x0)[f(x)-f(x0)]/(x-x0)
=lim(x→x0)(x-x0)*lim(x→x0)[f(x)-f(x0)]/(x-x0)
=0*A=0
而lim(x→x0)[f(x)-f(x0)]
=lim(x→x0)f(x)-lim(x→x0)f(x0)
因为f(x0)是常数(函数式在任何一点上的函数值都是常数)
所以lim(x→x0)f(x0)=f(x0)
所以lim(x→x0)[f(x)-f(x0)]
=lim(x→x0)f(x)-f(x0)=0
lim(x→x0)f(x)=f(x0)
f(x)在x0点处极限值等于函数值,所以在x0点处连续。
这是函数的导数定义公式确定的。
函数的定义:给定一个数集A,假设其中的元素为x。现对A中的元素x施加对应法则f,记作f(x),得到另一数集B。假设B中的元素为y。则y与x之间的等量关系可以用y=f(x)表示。我们把这个关系式就叫函数关系式,简称函数。函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
函数(function),最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。