spss信度和效度分析怎么做?
展开全部
spss信度和效度分析怎么做:
信度分析
信度(Reliability)即可靠性,是指采用同一方法对同一对象进行调查时,问卷调查结果的稳定性和一致性,即测量工具(问卷或量表)能否稳定地测量所测的事物或变量。信度指标多以相关系数表示,具体评价方法大致可分为三类:稳定系数(跨时间的一致性),等值系数(跨形式的一致性)和内在一致性系数(跨项目的一致性)。信度分析的方法主要有以下四种:
1、重测信度法
同样的问卷,对同一组访问对象在尽可能相同的情况下,在不同时间进行两次测量。两次测量相距一般在两到四周之内。用两次测量结果间的相关分析或差异的显著性检验方法,评价量表信度的高低。
2、折半法。折半法是将上述两份问卷合成一份问卷(通常要求这两份问卷的问题数目相等),每一份作为一部分,然后考察这两个部分的测量结果之间的相关性。
3、折半信度法
折半信度法是将调查项目分为两半,计算两半得分的相关系数,进而估计整个量表的信度。折半信度属于内在一致性系数,测量的是两半题项得分间的一致性。这种方法一般不适用于事实式问卷(如年龄与性别无法相比),常用于态度、意见式问卷的信度分析。在问卷调查中,态度测量最常见的形式是5级李克特(Likert)量表。进行折半信度分析时,如果量表中含有反意题项,应先将反意题项的得分作逆向处理,以保证各题项得分方向的一致性,然后将全部题项按奇偶或前后分为尽可能相等的两半,计算二者的相关系数(rhh,即半个量表的信度系数),最后用斯皮尔曼-布朗(Spearman-Brown)公式:
求出整个量表的信度系数(ru)。
二、效度分析
效度(Validity)即有效性,它是指测量工具或手段能够准确测出所需测量的事物的程度。效度分为三种类型:内容效度、准则效度和结构效度。效度分析有多种方法,其测量结果反映效度的不同方面。常用于调查问卷效度分析的方法主要有以下几种。
1、单项与总和相关效度分析
表面效度(Face
Validity)。也称为内容效度或逻辑效度,指的是测量的内容与测量目标之间是否适合,也可以说是指测量所选择的项目是否“看起来”符合测量的目的和要求。主要依据调查设计人员的主观判断。
这种方法用于测量量表的内容效度。内容效度又称表面效度或逻辑效度,它是指所设计的题项能否代表所要测量的内容或主题。对内容效度常采用逻辑分析与统计分析相结合的方法进行评价。逻辑分析一般由研究者或专家评判所选题项是否“看上去”符合测量的目的和要求。统计分析主要采用单项与总和相关分析法获得评价结果,即计算每个题项得分与题项总分的相关系数,根据相关是否显著判断是否有效。若量表中有反意题项,应将其逆向处理后再计算总分。
2、准则效度分析
准则效度(Criterion
Validity)。又称为效标效度或预测效度。准则效度是指量表所得到的数据和其他被选择的变量(准则变量)的值相比是否有意义。根据时间跨度的不同,准则效度可分为同时效度和预测效度。准则效度分析是根据已经得到确定的某种理论,选择一种指标或测量工具作为准则(效标),分析问卷题项与准则的联系,若二者相关显著,或者问卷题项对准则的不同取值、特性表现出显著差异,则为有效的题项。评价准则效度的方法是相关分析或差异显著性检验。在调查问卷的效度分析中,选择一个合适的准则往往十分困难,使这种方法的应用受到一定限制。
3、结构效度分析
建构效度(Construct
Validity)。是指测量结果体现出来的某种结构与测值之间的对应程度。结构效度分析所采用的方法是因子分析。最关心的问题是:量表实际测量的是哪些
特征?在评价建构效度时,调研人员要试图解释“量表为什么有效”这一理论问题以及考虑从这一理论问题中能得出什么推论。建构效度包括同质效度、异质效度和语意逻辑效度。有的学者认为,效度分析最理想的方法是利用因子分析测量量表或整个问卷的结构效度。因子分析的主要功能是从量表全部变量(题项)中提取一些公因子,各公因子分别与某一群特定变量高度关联,这些公因子即代表了量表的基本结构。通过因子分析可以考察问卷是否能够测量出研究者设计问卷时假设的某种结构。在因子分析的结果中,用于评价结构效度的主要指标有累积贡献率、共同度和因子负荷。累积贡献率反映公因子对量表或问卷的累积有效程度,共同度反映由公因子解释原变量的有效程度,因子负荷反映原变量与某个公因子的相关程度。
信度分析
信度(Reliability)即可靠性,是指采用同一方法对同一对象进行调查时,问卷调查结果的稳定性和一致性,即测量工具(问卷或量表)能否稳定地测量所测的事物或变量。信度指标多以相关系数表示,具体评价方法大致可分为三类:稳定系数(跨时间的一致性),等值系数(跨形式的一致性)和内在一致性系数(跨项目的一致性)。信度分析的方法主要有以下四种:
1、重测信度法
同样的问卷,对同一组访问对象在尽可能相同的情况下,在不同时间进行两次测量。两次测量相距一般在两到四周之内。用两次测量结果间的相关分析或差异的显著性检验方法,评价量表信度的高低。
2、折半法。折半法是将上述两份问卷合成一份问卷(通常要求这两份问卷的问题数目相等),每一份作为一部分,然后考察这两个部分的测量结果之间的相关性。
3、折半信度法
折半信度法是将调查项目分为两半,计算两半得分的相关系数,进而估计整个量表的信度。折半信度属于内在一致性系数,测量的是两半题项得分间的一致性。这种方法一般不适用于事实式问卷(如年龄与性别无法相比),常用于态度、意见式问卷的信度分析。在问卷调查中,态度测量最常见的形式是5级李克特(Likert)量表。进行折半信度分析时,如果量表中含有反意题项,应先将反意题项的得分作逆向处理,以保证各题项得分方向的一致性,然后将全部题项按奇偶或前后分为尽可能相等的两半,计算二者的相关系数(rhh,即半个量表的信度系数),最后用斯皮尔曼-布朗(Spearman-Brown)公式:
求出整个量表的信度系数(ru)。
二、效度分析
效度(Validity)即有效性,它是指测量工具或手段能够准确测出所需测量的事物的程度。效度分为三种类型:内容效度、准则效度和结构效度。效度分析有多种方法,其测量结果反映效度的不同方面。常用于调查问卷效度分析的方法主要有以下几种。
1、单项与总和相关效度分析
表面效度(Face
Validity)。也称为内容效度或逻辑效度,指的是测量的内容与测量目标之间是否适合,也可以说是指测量所选择的项目是否“看起来”符合测量的目的和要求。主要依据调查设计人员的主观判断。
这种方法用于测量量表的内容效度。内容效度又称表面效度或逻辑效度,它是指所设计的题项能否代表所要测量的内容或主题。对内容效度常采用逻辑分析与统计分析相结合的方法进行评价。逻辑分析一般由研究者或专家评判所选题项是否“看上去”符合测量的目的和要求。统计分析主要采用单项与总和相关分析法获得评价结果,即计算每个题项得分与题项总分的相关系数,根据相关是否显著判断是否有效。若量表中有反意题项,应将其逆向处理后再计算总分。
2、准则效度分析
准则效度(Criterion
Validity)。又称为效标效度或预测效度。准则效度是指量表所得到的数据和其他被选择的变量(准则变量)的值相比是否有意义。根据时间跨度的不同,准则效度可分为同时效度和预测效度。准则效度分析是根据已经得到确定的某种理论,选择一种指标或测量工具作为准则(效标),分析问卷题项与准则的联系,若二者相关显著,或者问卷题项对准则的不同取值、特性表现出显著差异,则为有效的题项。评价准则效度的方法是相关分析或差异显著性检验。在调查问卷的效度分析中,选择一个合适的准则往往十分困难,使这种方法的应用受到一定限制。
3、结构效度分析
建构效度(Construct
Validity)。是指测量结果体现出来的某种结构与测值之间的对应程度。结构效度分析所采用的方法是因子分析。最关心的问题是:量表实际测量的是哪些
特征?在评价建构效度时,调研人员要试图解释“量表为什么有效”这一理论问题以及考虑从这一理论问题中能得出什么推论。建构效度包括同质效度、异质效度和语意逻辑效度。有的学者认为,效度分析最理想的方法是利用因子分析测量量表或整个问卷的结构效度。因子分析的主要功能是从量表全部变量(题项)中提取一些公因子,各公因子分别与某一群特定变量高度关联,这些公因子即代表了量表的基本结构。通过因子分析可以考察问卷是否能够测量出研究者设计问卷时假设的某种结构。在因子分析的结果中,用于评价结构效度的主要指标有累积贡献率、共同度和因子负荷。累积贡献率反映公因子对量表或问卷的累积有效程度,共同度反映由公因子解释原变量的有效程度,因子负荷反映原变量与某个公因子的相关程度。
2019-10-09 · 百度认证:SPSSAU官方账号,优质教育领域创作者
关注
展开全部
首先,你把A非常同意设置数值为1,B同意为2,C一般为3,D不同意,为4,E非常不同意为5。
信度分析:
步骤:分析——度量——可靠性分析,然后选入你所要分析的项目,例如,你要分析整个量表,就选如所有项目;若是一个维度,就只选一个维度下人项目。
数据分析:
得到的结果是克伦巴赫α信度系数,一般要大于0.7,最低不小于0.6,0.8就非常好了。
我不知道你的问卷有没有分维度,如果有,可采用内容效度。内容效度可用分量表之间的相关来考察,计算量表各维度之间的相关系数。
步骤:
计算各个维度的平均分——分析——相关分析——双变量,选入问卷所有项目,然后确定。
数据分析:
各个维度不出现相关即证明效度好,若有,也应该是低程度的相关。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |