微积分 求解
2个回答
展开全部
解:在球面坐标系中计算:
ʃʃʃv(x/a+y/b+z/c)²dV
=ʃ[0,2π]dθʃ[0,π]dφʃ[0,R](ρsinφcosθ/a
+ρsinφsinθ/b+ρcosφ/c)²ρ²sinφdρ
=[(R^5)/5]ʃ[0,2π]dθʃ[0,π](sinφcosθ/a
+sinφsinθ/b+cosφ/c)²sinφdφ
=[(R^5)/5]ʃ[0,2π]dθʃ[0,π][(cosθ/a
+sinθ/b)sinφ+(1/c)cosφ]²sinφdφ
=[(R^5)/5]ʃ[0,2π]dθʃ[0,π][(cosθ/a+sinθ/b)²sin³φ+(2/c)(cosθ/a+sinθ/b)sin²φcosφ
+(1/c²)cos²φsinφ]dφ
=[(R^5)/5]ʃ[0,2π][(cosθ/a+sinθ/b)²(4/3)
+0+(1/c²)(2/3)]dθ
=[4(R^5)/15]ʃ[0,2π][(cosθ/a+sinθ/b)²
+1/(2c²)]dθ
=[4(R^5)/15]ʃ[0,2π][cos²θ/a²+sin2θ/(ab)+sin²θ/b²+1/(2c²)]dθ
=[4(R^5)/15][π/a²+0+π/b²+2π/(2c²)]
=[4π(R^5)/15](1/a²+1/b²+1/c²).
ʃʃʃv(x/a+y/b+z/c)²dV
=ʃ[0,2π]dθʃ[0,π]dφʃ[0,R](ρsinφcosθ/a
+ρsinφsinθ/b+ρcosφ/c)²ρ²sinφdρ
=[(R^5)/5]ʃ[0,2π]dθʃ[0,π](sinφcosθ/a
+sinφsinθ/b+cosφ/c)²sinφdφ
=[(R^5)/5]ʃ[0,2π]dθʃ[0,π][(cosθ/a
+sinθ/b)sinφ+(1/c)cosφ]²sinφdφ
=[(R^5)/5]ʃ[0,2π]dθʃ[0,π][(cosθ/a+sinθ/b)²sin³φ+(2/c)(cosθ/a+sinθ/b)sin²φcosφ
+(1/c²)cos²φsinφ]dφ
=[(R^5)/5]ʃ[0,2π][(cosθ/a+sinθ/b)²(4/3)
+0+(1/c²)(2/3)]dθ
=[4(R^5)/15]ʃ[0,2π][(cosθ/a+sinθ/b)²
+1/(2c²)]dθ
=[4(R^5)/15]ʃ[0,2π][cos²θ/a²+sin2θ/(ab)+sin²θ/b²+1/(2c²)]dθ
=[4(R^5)/15][π/a²+0+π/b²+2π/(2c²)]
=[4π(R^5)/15](1/a²+1/b²+1/c²).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询