求下列导数

如图... 如图 展开
 我来答
xhszss
2019-04-01 · TA获得超过917个赞
知道小有建树答主
回答量:1031
采纳率:87%
帮助的人:286万
展开全部


如图所示

追问
剩下的题能也写下吗,谢谢了
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
sjh5551
高粉答主

2019-04-01 · 醉心答题,欢迎关注
知道大有可为答主
回答量:3.8万
采纳率:63%
帮助的人:7887万
展开全部
(1) y' = (5ln10)10^x + 10x^9, y'(2) = 500ln10 + 5120
(2) y' = 10(x-a)^9(x-b)^5 + 5(x-a)^10(x-b)^4 = 5(3x-a-2b)(x-a)^9(x-b)^4
(3) y' = {2e^(2x)[e^(2x)+1] - 2e^(2x)[e^(2x-1)]}/[e^(2x)+1]^2
= 4e^(2x)/[e^(2x)+1]^2
(4) y' = -14tanx(secx)^2 = -14sinx/(cosx)^3
(5) y' = (1/2)[sin(2x-1)]^(-1/2) cos(2x-1) 2 = cos(2x-1)/√sin(2x-1)
(6) y' = arccot(1/x) + x(-1/x^2)/[1+(1/x)^2] = arccot(1/x) - x/(1+x^2)
(7) y' = -2cosxsinx/(cosx)^2 = -2tanx
(8) y' = 8[f(2x^2+4)]^7(4x) - 2cos[g(x)]g'(x) + e^[sinf(x)]cosf(x) f'(x)
= 32x[f(2x^2+4)]^7 - 2g'(x)cos[g(x)] + f'(x)cosf(x)e^[sinf(x)]
(9) y' = nx^(n-1), y'' = n(n-1)x^(n-2), ......, y^(n) = n!, y^(n+1) = 0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
lgzpw
活跃答主

2019-04-01 · 来这里与你纸上谈兵
知道大有可为答主
回答量:2万
采纳率:95%
帮助的人:1242万
展开全部

答案在纸上面

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式