2个回答
展开全部
x^2 = x(1+x) -x =x(1+x) -(1+x) +1
x^2= -x(1-x) +x =-x(1-x) -(1-x) +1
∫xln[(1+x)/(1-x)] dx
=(1/2)∫ln[(1+x)/(1-x)] dx^2
=(1/2)x^2.ln[(1+x)/(1-x)] - (1/2)∫x^2.[1/(1+x)+ 1/(1-x)] dx
=(1/2)x^2.ln[(1+x)/(1-x)] - (1/2)∫ { [ ( x-1+1/(1+x) ] + [ -x-1 +1/(1-x) ] }dx
=(1/2)x^2.ln[(1+x)/(1-x)] - (1/2)∫ [ -2 +1/(1+x) + 1/(1-x) ] dx
=(1/2)x^2.ln[(1+x)/(1-x)] - (1/2) [ -2x +ln|(1+x)/(1-x)| ] +C
=(1/2)(x^2-1)ln[(1+x)/(1-x)] + x + C
x^2= -x(1-x) +x =-x(1-x) -(1-x) +1
∫xln[(1+x)/(1-x)] dx
=(1/2)∫ln[(1+x)/(1-x)] dx^2
=(1/2)x^2.ln[(1+x)/(1-x)] - (1/2)∫x^2.[1/(1+x)+ 1/(1-x)] dx
=(1/2)x^2.ln[(1+x)/(1-x)] - (1/2)∫ { [ ( x-1+1/(1+x) ] + [ -x-1 +1/(1-x) ] }dx
=(1/2)x^2.ln[(1+x)/(1-x)] - (1/2)∫ [ -2 +1/(1+x) + 1/(1-x) ] dx
=(1/2)x^2.ln[(1+x)/(1-x)] - (1/2) [ -2x +ln|(1+x)/(1-x)| ] +C
=(1/2)(x^2-1)ln[(1+x)/(1-x)] + x + C
追问
辛苦啦😇
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询