求这道题敛散性的判定

会... 展开
 我来答
bill8341
高粉答主

2018-11-04 · 关注我不会让你失望
知道大有可为答主
回答量:1.8万
采纳率:95%
帮助的人:3686万
展开全部
极限审敛法:
∵lim(n→∞)n*un=(3/2)^n=+∞
∴un发散.

比值审敛法:
un+1=3^(n+1)/[(n+1)*2^(n+1)]=3^n*3/[(n+1)*2^n*2]
un+1/un=3n/(2n+2)
lim(n→∞)un+1/un=3/2>1,∴发散

根值审敛法:
n^√un=3/2*n^√(1/n)=3/2*(1/n)^(1/n)
令t=1/n,则当n→∞时t→0,t^t→1
∴lim(n→∞)n^√un=3/2>1,发散.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式