高数高数偏微分题目,题目如图,我老是算不对,求大佬
2个回答
展开全部
z = x(x^2+y^2)^(1/2)
∂z/∂x = (x^2+y^2)^(1/2) + x^2(x^2+y^2)^(-1/2)
∂z/∂y = xy(x^2+y^2)^(-1/2)
∂^2z/∂x^2 = x(x^2+y^2)^(-1/2) + 2x(x^2+y^2)^(-1/2) - x^3(x^2+y^2)^(-3/2)
= [3x(x^2+y^2)-x^3]/(x^2+y^2)^(3/2) = x(2x^2+3y^2)/(x^2+y^2)^(3/2)
∂^2z/∂x∂y = y(x^2+y^2)^(-1/2) - x^2y(x^2+y^2)^(-3/2)
= y^3/(x^2+y^2)^(3/2)
∂^2z/∂y^2 = x(x^2+y^2)^(-1/2) - xy^2(x^2+y^2)^(-3/2)
= x^3/(x^2+y^2)^(3/2)
∂z/∂x = (x^2+y^2)^(1/2) + x^2(x^2+y^2)^(-1/2)
∂z/∂y = xy(x^2+y^2)^(-1/2)
∂^2z/∂x^2 = x(x^2+y^2)^(-1/2) + 2x(x^2+y^2)^(-1/2) - x^3(x^2+y^2)^(-3/2)
= [3x(x^2+y^2)-x^3]/(x^2+y^2)^(3/2) = x(2x^2+3y^2)/(x^2+y^2)^(3/2)
∂^2z/∂x∂y = y(x^2+y^2)^(-1/2) - x^2y(x^2+y^2)^(-3/2)
= y^3/(x^2+y^2)^(3/2)
∂^2z/∂y^2 = x(x^2+y^2)^(-1/2) - xy^2(x^2+y^2)^(-3/2)
= x^3/(x^2+y^2)^(3/2)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询