求高中数学数列用倒序相加法,裂项法,合并法求和的例题

RT!... RT! 展开
 我来答
校俊独馨
2020-02-20 · TA获得超过3920个赞
知道大有可为答主
回答量:3097
采纳率:31%
帮助的人:229万
展开全部
1.倒叙相加法:
最基本的
1+2+3+4……+100
=(1+100)+(2+99)+(3+98)...(48+53)+(49+52)+(50+51)
=101*50
=5050
稍微复杂的
f{x}=1/[2^x+√2]求f[-5]+f{-4}+……+f{0}+……+f{5}+f{6}的值
所以S=f(-5)+f(-4)+……+f(0)+……+f(5)+f(6)
S=[f(-5)+f(6)]+[f(-4)+f(5)]+[f(-3)+f(4)]+[f(-2)+f(3)]+[f(-1)+f(2)]+[f(0)+f(1)]
而f(-5)+f(6)...f(0)+f(1)等
式子
都满足f(x)+f(1-x)的形式
也即使f(-5)+f(6)...f(0)+f(1)的值都是√2/2
所以S=6×√2/2=3√2
2.裂项法
这是分解与组合思想在
数列
求和中的具体应用.
裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.
通项分解(裂项)如:

1)1/n(n+1)=1/n-1/(n+1)
(
2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)]
  (3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)]
  (4)1/(√a+√b)=[1/(a-b)](√a-√b)
  (5)
n·n!=(n+1)!-n!
简单的
1.
求数列an=1/n(n+1)
的前n项和.
  解:设
an=1/n(n+1)=1/n-1/(n+1)
(裂项)
  则
Sn=1-1/2+1/2-1/3+1/4…+1/n-1/(n+1)(裂项求和)
  =
1-1/(n+1)
  =
n/(n+1)
复杂的
3.合并法
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式