大数据工程师难度大吗?
4个回答
展开全部
大数据从事的是开源工作,更倾向于“研发”,能够重新激起程序员研发程序的热情,职业生涯有了新的追求,这意味着大数据会成为值得程序员长期奋斗不断突破的工作;
其次,由于大数据属新兴领域,专业人才比较缺乏,高端人才更是企业争抢的对象,薪资上升容易,职业发展潜力巨大。
二、大数据人才薪资如何?
做技术编程也是不错的,不过目前大数据是个趋势,稍微有实力点的企业都在上大数据项目,而Hadoop本身又是编程开发的,再加上Hadoop工程师普遍比纯技术编程开发要高30%以上,所以有很多搞技术编程的都在往hadoop大数据方向转。
做技术编程的人已经比较多了,很多人工作4~5年月薪也难上2万,能上2.5万的更是寥寥。但Hadoop很多人只1年经验就拿2万以上了。所以很多现在待遇还不错的人也在学大数据,主要也是考虑未来发展天花板的问题。
大数据工程师的工作难度大吗?首先我们先了解一下大数据工程师们需要处理哪些工作,根据工作内容,大家就能够在心中有个基本的概念。在工作岗位上,大数据工程师需要分析优化系统,解决系统运行中的稳定性问题;负责大数据基础设施框架的维护及二次开发,如kafka、flink、hbase等,负责进行数据采集、处理、分析、统计、挖掘工作等等。
大数据工程师的工作累吗?除开以上工作之外,大数据工程师还需要负责数据仓库、数据集市建设,通过离线、实时方式接入各数据源数据;根据业务需求对数据、清洗、处理、计算,建模等工作,负责 即时查询工具、固定报表、运营数据产品、Dashboard等产品的设计、研发及应用等等。
其次,由于大数据属新兴领域,专业人才比较缺乏,高端人才更是企业争抢的对象,薪资上升容易,职业发展潜力巨大。
二、大数据人才薪资如何?
做技术编程也是不错的,不过目前大数据是个趋势,稍微有实力点的企业都在上大数据项目,而Hadoop本身又是编程开发的,再加上Hadoop工程师普遍比纯技术编程开发要高30%以上,所以有很多搞技术编程的都在往hadoop大数据方向转。
做技术编程的人已经比较多了,很多人工作4~5年月薪也难上2万,能上2.5万的更是寥寥。但Hadoop很多人只1年经验就拿2万以上了。所以很多现在待遇还不错的人也在学大数据,主要也是考虑未来发展天花板的问题。
大数据工程师的工作难度大吗?首先我们先了解一下大数据工程师们需要处理哪些工作,根据工作内容,大家就能够在心中有个基本的概念。在工作岗位上,大数据工程师需要分析优化系统,解决系统运行中的稳定性问题;负责大数据基础设施框架的维护及二次开发,如kafka、flink、hbase等,负责进行数据采集、处理、分析、统计、挖掘工作等等。
大数据工程师的工作累吗?除开以上工作之外,大数据工程师还需要负责数据仓库、数据集市建设,通过离线、实时方式接入各数据源数据;根据业务需求对数据、清洗、处理、计算,建模等工作,负责 即时查询工具、固定报表、运营数据产品、Dashboard等产品的设计、研发及应用等等。
展开全部
大数据从事的是开源工作,更倾向于“研发”,能够重新激起程序员研发程序的热情,职业生涯有了新的追求,这意味着大数据会成为值得程序员长期奋斗不断突破的工作;
其次,由于大数据属新兴领域,专业人才比较缺乏,高端人才更是企业争抢的对象,薪资上升容易,职业发展潜力巨大。
二、大数据人才薪资如何?
做技术编程也是不错的,不过目前大数据是个趋势,稍微有实力点的企业都在上大数据项目,而Hadoop本身又是编程开发的,再加上Hadoop工程师普遍比纯技术编程开发要高30%以上,所以有很多搞技术编程的都在往hadoop大数据方向转。
做技术编程的人已经比较多了,很多人工作4~5年月薪也难上2万,能上2.5万的更是寥寥。但Hadoop很多人只1年经验就拿2万以上了。所以很多现在待遇还不错的人也在学大数据,主要也是考虑未来发展天花板的问题。
大数据工程师的工作难度大吗?首先我们先了解一下大数据工程师们需要处理哪些工作,根据工作内容,大家就能够在心中有个基本的概念。在工作岗位上,大数据工程师需要分析优化系统,解决系统运行中的稳定性问题;负责大数据基础设施框架的维护及二次开发,如kafka、flink、hbase等,负责进行数据采集、处理、分析、统计、挖掘工作等等。
大数据工程师的工作累吗?除开以上工作之外,大数据工程师还需要负责数据仓库、数据集市建设,通过离线、实时方式接入各数据源数据;根据业务需求对数据、清洗、处理、计算,建模等工作,负责 即时查询工具、固定报表、运营数据产品、Dashboard等产品的设计、研发及应用等等。
其次,由于大数据属新兴领域,专业人才比较缺乏,高端人才更是企业争抢的对象,薪资上升容易,职业发展潜力巨大。
二、大数据人才薪资如何?
做技术编程也是不错的,不过目前大数据是个趋势,稍微有实力点的企业都在上大数据项目,而Hadoop本身又是编程开发的,再加上Hadoop工程师普遍比纯技术编程开发要高30%以上,所以有很多搞技术编程的都在往hadoop大数据方向转。
做技术编程的人已经比较多了,很多人工作4~5年月薪也难上2万,能上2.5万的更是寥寥。但Hadoop很多人只1年经验就拿2万以上了。所以很多现在待遇还不错的人也在学大数据,主要也是考虑未来发展天花板的问题。
大数据工程师的工作难度大吗?首先我们先了解一下大数据工程师们需要处理哪些工作,根据工作内容,大家就能够在心中有个基本的概念。在工作岗位上,大数据工程师需要分析优化系统,解决系统运行中的稳定性问题;负责大数据基础设施框架的维护及二次开发,如kafka、flink、hbase等,负责进行数据采集、处理、分析、统计、挖掘工作等等。
大数据工程师的工作累吗?除开以上工作之外,大数据工程师还需要负责数据仓库、数据集市建设,通过离线、实时方式接入各数据源数据;根据业务需求对数据、清洗、处理、计算,建模等工作,负责 即时查询工具、固定报表、运营数据产品、Dashboard等产品的设计、研发及应用等等。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
不难学的,大数据开发是大数据职业发展方向之一,另外一个方向是大数据分析。从工作内容上来说,大数据开发主要是负责大数据挖掘,大数据清洗处理,大数据建模等工作,主要是负责大规模数据的处理和应用,工作主要以开发为主,与大数据可视化分析工程师相互配合,从数据中挖掘出价值,为企业业务发展提供支持。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
大数据近年来越来越火,因为有了它,好像什么行业都能精准分析。但是,大数据本身的发展却很少有人分析。近日,国家信息中心、南海大数据应用研究院联合发布了《2017中国大数据发展报告》,首次把中国大数据本身的发展特点和存在的问题,全面呈现了出来。
用大数据来了解大数据
这份报告全面汇聚了国家发改委互联网大数据分析中心、国家信息中心、“一带一路”大数据中心所掌握的30多个种类,总计40多亿条相关数据,综合运用多种大数据分析方法,对我国大数据产业发展进行了全面分析。所以,称得上是用大数据来了解大数据。
北京、广东、上海大数据发展位居前三
报告显示,我国大数据发展总体处于起步阶段。但是从地域上看,就有意思了。
国家信息中心信息化研究部副主任、南海大数据应用研究院院长于施洋指出:“从地域分布,从各个省来说,北京排第一,这个不足为怪,东部沿海地区这些省份排在前面,大家也都能够想象。但是在西南地区,四川、重庆、贵州这三个地方异军突起,是我们大数据发展的第二个增长极。”
产业落后是地方大数据发展的突出短板
具体来看,各省份大数据发展指数的排名中,贵州、重庆、四川,紧随东部沿海省份,全部排进了前十名,领先任何一个中部省份。分析认为,这主要是地方政策引领的结果。这三个西部省市,早早都把大数据产业的发展作为重点工程来打造。对于这种“弯道超车”现象,国家行政学院教授汪玉凯建议,这些地方下一步可以重点考虑产业落地问题:“它们是首先抓住了一个概念,然后占了一个先机。但是相对能够落地的产业应用还是比较少的,这是它们的软肋。所以我认为,你们一定要注意应用,要打造你的优势。”
人才短缺问题日益突出
报告指出,数据管理环节漏洞较多,是大数据发展面临的首要问题,包括由此引发的运营成本过高、资源利用率低、应用部署过于复杂等难点。而我们更关注的是另一大问题。
我们会发现,大数据领域里数据是有了,但是能驾驭这些数据的人是极其匮乏的。比如说大数据的专业人才方面,现在分析类的人才,市场是供不应求,缺口非常大,而项目管理类的人才,供给又远远大于需求,所以结构上还不平衡。高端的人才奇缺,这是最突出的问题。”
发展大数据要谨防人才“眼高手低”
大数据的核心就是数据的抓取与分析,而分析环节,目前离不开人工设置变量,建立模型。所谓“差之毫厘,谬之千里”,大数据分析对人才的要求很高。但首份大数据发展报告却揭示,我国大数据人才能搞管理的不少,真正能做分析的却远远不够,这是典型的“眼高手低”,势必伤害大数据产业的长远发展。人才短板可以从教育方面着手弥补,探索新的人才培养模式。比如,将高校大数据系列课程分为理论教学和技术教学两方面;比如社会上优质的专注大数据人才培养机构等多方面进行。
用大数据来了解大数据
这份报告全面汇聚了国家发改委互联网大数据分析中心、国家信息中心、“一带一路”大数据中心所掌握的30多个种类,总计40多亿条相关数据,综合运用多种大数据分析方法,对我国大数据产业发展进行了全面分析。所以,称得上是用大数据来了解大数据。
北京、广东、上海大数据发展位居前三
报告显示,我国大数据发展总体处于起步阶段。但是从地域上看,就有意思了。
国家信息中心信息化研究部副主任、南海大数据应用研究院院长于施洋指出:“从地域分布,从各个省来说,北京排第一,这个不足为怪,东部沿海地区这些省份排在前面,大家也都能够想象。但是在西南地区,四川、重庆、贵州这三个地方异军突起,是我们大数据发展的第二个增长极。”
产业落后是地方大数据发展的突出短板
具体来看,各省份大数据发展指数的排名中,贵州、重庆、四川,紧随东部沿海省份,全部排进了前十名,领先任何一个中部省份。分析认为,这主要是地方政策引领的结果。这三个西部省市,早早都把大数据产业的发展作为重点工程来打造。对于这种“弯道超车”现象,国家行政学院教授汪玉凯建议,这些地方下一步可以重点考虑产业落地问题:“它们是首先抓住了一个概念,然后占了一个先机。但是相对能够落地的产业应用还是比较少的,这是它们的软肋。所以我认为,你们一定要注意应用,要打造你的优势。”
人才短缺问题日益突出
报告指出,数据管理环节漏洞较多,是大数据发展面临的首要问题,包括由此引发的运营成本过高、资源利用率低、应用部署过于复杂等难点。而我们更关注的是另一大问题。
我们会发现,大数据领域里数据是有了,但是能驾驭这些数据的人是极其匮乏的。比如说大数据的专业人才方面,现在分析类的人才,市场是供不应求,缺口非常大,而项目管理类的人才,供给又远远大于需求,所以结构上还不平衡。高端的人才奇缺,这是最突出的问题。”
发展大数据要谨防人才“眼高手低”
大数据的核心就是数据的抓取与分析,而分析环节,目前离不开人工设置变量,建立模型。所谓“差之毫厘,谬之千里”,大数据分析对人才的要求很高。但首份大数据发展报告却揭示,我国大数据人才能搞管理的不少,真正能做分析的却远远不够,这是典型的“眼高手低”,势必伤害大数据产业的长远发展。人才短板可以从教育方面着手弥补,探索新的人才培养模式。比如,将高校大数据系列课程分为理论教学和技术教学两方面;比如社会上优质的专注大数据人才培养机构等多方面进行。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询