4个回答
展开全部
1小题,∵n→∞时,(n²-1)/[(4n^5)-3n²-1]~1/(4n³),而,∑1/(4n³)=(1/4)∑1/n³,是p=3>1的级数,收敛。∴级数∑(n²-1)/[(4n^5)-3n²-1]收敛。
2小题,设S(x)=∑(n!)x^n。∴ρ=lim(n→∞)丨a(n+1)/an丨=lim(n→∞)(n+1)→∞,∴S(x)的收敛半径R=1/ρ=0,即x=0时,S(x)收敛。级数∑[(-1/4)^n]n!=S(-1/4)≠S(0)。∴级数∑[(-1/4)^n]n!发散。
2小题,设S(x)=∑(n!)x^n。∴ρ=lim(n→∞)丨a(n+1)/an丨=lim(n→∞)(n+1)→∞,∴S(x)的收敛半径R=1/ρ=0,即x=0时,S(x)收敛。级数∑[(-1/4)^n]n!=S(-1/4)≠S(0)。∴级数∑[(-1/4)^n]n!发散。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询