根据韦达定理能算出X1-X2吗?
1个回答
展开全部
能
对于方程ax^2+bx+c=0
(x1-x2)^2=x1^2+x2^2-2x1x2
=(x1+x2)^2-4x1x2
而x1+x2=-b/a x1x2=c/a
代入得
(x1-x2)^2=(b^2-4ac)/a^2
所以|x1-x2|=根号下(x1-x2)^2=根号下[(b^2-4ac)/a^2]=根号下[(b^2-4ac)]/a
所以x1-x2=根号下[(b^2-4ac)]/a 或-根号下[(b^2-4ac)]/a
对于方程ax^2+bx+c=0
(x1-x2)^2=x1^2+x2^2-2x1x2
=(x1+x2)^2-4x1x2
而x1+x2=-b/a x1x2=c/a
代入得
(x1-x2)^2=(b^2-4ac)/a^2
所以|x1-x2|=根号下(x1-x2)^2=根号下[(b^2-4ac)/a^2]=根号下[(b^2-4ac)]/a
所以x1-x2=根号下[(b^2-4ac)]/a 或-根号下[(b^2-4ac)]/a
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询