dx和△x的区别?
1个回答
展开全部
dx和△x的区别:
1、dx是Δx的近似值,其中Δx比dx多了一个低价无穷小,即:Δx=dx+o(dx),其中o(dx)是比dx高阶的无穷少,这一项非常小故可以忽略,dx≈Δx。
2、如果此处的x是自变量,那么dx=△x,通常把自变量x的增量△x称为自变量的微分,记作dx;如果这里的x是因变量,那么把自变量写作y的话,△x是变化量,dx=导数*△y。
3、dx是x的微分,Δx是x的改变量。一般两者不等。前者是后者的线性主部。但对自变量而言,因为x对x的导数恒等于1,两者相等。反之,两者相等的也只有自变量。
含义理解
因为函数y=f(x)的微分 dy=f′(x)dx,所以,dy/dx=f′(x)。刚引入导数概念的时候dy/dx是作为整体记号来记导数的,等到有了微分概念之后,导数就是因变量的微分与自变量的微分的比值。
△y/△x是函数值的增量与自变量的增量的比值.函数值的增量一般与函数的微分是不相等的,而自变量的微分就是自变量的增量。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询