e^x+y+cosxy=2,求y的导数|x=0
展开全部
e^x+y+cosxy=2
x=0
e^0 +y(0) + 1 = 2
y(0) =0
(x,y)=(0,0)
//
e^x+y+cosxy=2
d/dx (e^x+y+cosxy )=0
e^x + y' -sin(xy) .(xy)' =0
e^x + y' -sin(xy) .(xy' + y) =0
[ xsin(xy) -1] y' = e^x -ysin(xy)
y' = [e^x -ysin(xy)]/[ xsin(xy) -1]
y'|(x,y)=(0,0)
=[1 -0]/[ 0 -1]
=-1
x=0
e^0 +y(0) + 1 = 2
y(0) =0
(x,y)=(0,0)
//
e^x+y+cosxy=2
d/dx (e^x+y+cosxy )=0
e^x + y' -sin(xy) .(xy)' =0
e^x + y' -sin(xy) .(xy' + y) =0
[ xsin(xy) -1] y' = e^x -ysin(xy)
y' = [e^x -ysin(xy)]/[ xsin(xy) -1]
y'|(x,y)=(0,0)
=[1 -0]/[ 0 -1]
=-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询