【解答】
因为A,B
正定,则 AT=A,BT=B,且 xTAx>0,xTBx>0
(A+B)T=AT+BT=A+B,
对称矩阵 xT(A+B)x = xTAx+xTBx > 0
所以A+B正定。
【评注】
证明矩阵A正定,首先要证明AT=A
正定的【充分必要】条件条件有:
1、特征值大于0
2、与E合同
3、存在
可逆矩阵B,A=BTB
4、正惯性指数 为n
5、各阶
顺序主子式均大于0
6、对于任意x≠0,xTAx>0
newmanhero 2015年3月13日22:06:15
希望对你有所帮助,望采纳。