如何用中值定理证明:当x≠0时,e^x>1+x

 我来答
世纪网络17
2022-06-15 · TA获得超过5956个赞
知道小有建树答主
回答量:2426
采纳率:100%
帮助的人:144万
展开全部
设f(u)=e^u,则f(u)在(-∞,+∞) 上的任何有限区间上均满足拉格朗日中值定理的条件,任取x,则在[0,x]或[x,0]上应用拉格朗日中值定理,在0与x之间至少存在一点c,使(e^x-e^0)/(x-0)=f'(c)所以e^x=e^cx+1当 x>0时,c>0,则e^c...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式