单调函数不存在第二类间断点。
那要看有没有单调区间,可能在一段区间内单调,也可能在整个定义域内单调。
例如,设函数y=f(x)在区间[a,b]上单调增加,在c∈(a,b)处间断,则f(x)在区间(a,c)单调增加,且f(x)<f(b),(x∈(a,c))。故f(c-0)存在,同理f(c+0)存在,因此c是第一类间断点。
推广
现代数学中,在有序集合之间的函数是单调(monotone)的,如果它们保持给定的次序。这些函数最先出现在微积分中,后来推广到序理论中更加抽象结构中。尽管概念一般是一致的,两个学科已经发展出稍微不同的术语。在微积分中,我们经常说函数是单调递增和单调递减的,在序理论中偏好术语单调和反单调或序保持和序反转。