已知tan([π/4]+θ)=3,则sin2θ-2cos2θ的值为 ______.?
1个回答
展开全部
解题思路:把已知条件利用两角和的正切函数公式和特殊角的三角函数值化简求得tanθ,然后把所求的式子利用二倍角的正弦函数公式及同角三角函数间的基本关系化简后,把tanθ的值代入即可求出值.
由tan(
π
4+θ)=3,得[1+tanθ/1-tanθ=3,解得tanθ=
1
2].
所以sin2θ-2cos2θ=
2sinθcosθ-2cos2θ
sin2θ+cos2θ =[2tanθ-2
tan2θ+1=-
4/5].
故答案为:-[4/5]
,6,tan(π/4+θ)=3
(tanπ/4+tanθ)/(1-tanπ/4tanθ)=3
(1+tanθ)/(1-tanθ)=3
1+tanθ=3-3tanθ
4tanθ=2
tanθ=1/2
sin2θ-2cos²θ
=sin2θ-(1+cos2θ)
=sin2θ-cos2θ-1
=2tanθ/(1+tan²...,1,tan(π/4+θ)= 3
sin2θ-2cos²θ= sin2θ-2×(1- cos2θ)/2
=sin2θ-cos2θ-1=- cos(2θ+π/2)- sin(2θ+π/2)-1
= -cos[2(θ+π/4)]- sin[2(θ+π/4)]-1
Cos[2(θ+π/4)]=[1- tan2(π/4+θ)] / [1+ tan2(π/4+θ)]=(1...,0,嗨。,0,
由tan(
π
4+θ)=3,得[1+tanθ/1-tanθ=3,解得tanθ=
1
2].
所以sin2θ-2cos2θ=
2sinθcosθ-2cos2θ
sin2θ+cos2θ =[2tanθ-2
tan2θ+1=-
4/5].
故答案为:-[4/5]
,6,tan(π/4+θ)=3
(tanπ/4+tanθ)/(1-tanπ/4tanθ)=3
(1+tanθ)/(1-tanθ)=3
1+tanθ=3-3tanθ
4tanθ=2
tanθ=1/2
sin2θ-2cos²θ
=sin2θ-(1+cos2θ)
=sin2θ-cos2θ-1
=2tanθ/(1+tan²...,1,tan(π/4+θ)= 3
sin2θ-2cos²θ= sin2θ-2×(1- cos2θ)/2
=sin2θ-cos2θ-1=- cos(2θ+π/2)- sin(2θ+π/2)-1
= -cos[2(θ+π/4)]- sin[2(θ+π/4)]-1
Cos[2(θ+π/4)]=[1- tan2(π/4+θ)] / [1+ tan2(π/4+θ)]=(1...,0,嗨。,0,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询