展开全部
证明:
∵BF平行于AC(已知)
∴∠ACB+∠CBF=180°(两直线平行,同旁内角互补)
∠ACE=∠BFC(两直线平行,内错角相等)
∵∠ACB=90°(已知)
∴∠CBF=180°-90°=90°
∴∠FCB+∠BFC=90°
∵∠ACE+∠CAD=90°(已知)
∴∠BFC+∠CAD=90°(等量代换)
∴∠FCB=∠CAD(同角的余角相等)
∵BC=AC(已知)
∴△ACD全等于△CFB(ASA)
∴CD=BF
∵D是BC的中点(已知)
∴CD=BD(中点定义)
∴BD=BF(等量代换)
∴△BDF为等腰三角形
∵∠CAB=∠CBA=45°(由△ABC是等腰三角形知)
∴AB垂直平分DF(等腰三角形三线合一)
∵BF平行于AC(已知)
∴∠ACB+∠CBF=180°(两直线平行,同旁内角互补)
∠ACE=∠BFC(两直线平行,内错角相等)
∵∠ACB=90°(已知)
∴∠CBF=180°-90°=90°
∴∠FCB+∠BFC=90°
∵∠ACE+∠CAD=90°(已知)
∴∠BFC+∠CAD=90°(等量代换)
∴∠FCB=∠CAD(同角的余角相等)
∵BC=AC(已知)
∴△ACD全等于△CFB(ASA)
∴CD=BF
∵D是BC的中点(已知)
∴CD=BD(中点定义)
∴BD=BF(等量代换)
∴△BDF为等腰三角形
∵∠CAB=∠CBA=45°(由△ABC是等腰三角形知)
∴AB垂直平分DF(等腰三角形三线合一)
展开全部
文字叙述可能有点不太清楚···你先画个图哈····思路:证明三角形DBG与三角形FBG全等(G点是AB与DF的交点) 因为AC平行与BF 所以角FBD是直角 所以角FBG等于角GBD 又因为BG等于BG 还差一个条件、可以证明BD等于BF 证明三角形ACD全等于三角形BCF 因为AC等于BC 又因为角ACB等于角CBF等于90° 又因为角CAD与角FCB加角ACF都等于90° 所以角CAD等于角FCB 所以三角形ACD与三角形BCF全等 所以CD等于BF 又因为D是BC边的中点 所以BD等于BF 所以三角形DBG与三角形FBG全等 所以AB垂直平分DF 终于写完了···希望对你帮助······
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
问题呢?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |