一元二次方程因式分解方法

 我来答
home巴扎黑黑
2023-07-30 · TA获得超过359个赞
知道大有可为答主
回答量:5562
采纳率:99%
帮助的人:105万
展开全部

一元二次方程可以通过因式分解的方法求解。

一元二次方程的一般形式:

一元二次方程的一般形式为ax²+bx+c=0,其中a、b、c为已知数,且a≠0。

因式分解的方法:

对于一元二次方程ax²+bx+c=0,可以通过因式分解的方法求解。具体方法如下:

1.对方程两边同时除以a,得到x²+b'x+c'/a=0,其中b'=b/a,c'=c/a。

2.将x²+b'x+c'/a表示成(x+m)(x+n)的形式,其中m、n为待定系数。

3.将(x+m)(x+n)展开,得到x²+(m+n)x+mn=0。

4.比较系数,得到m+n=b',mn=c'/a,即m和n是c'/a的两个因数,且它们的和为b'。

5.求出m和n的值,代入(x+m)(x+n)=0,得到方程的解。

拓展知识:

1.当一元二次方程的判别式b²-4ac>0时,方程有两个不相等的实数根;当b²-4ac=0时,方程有两个相等的实数根;当b²-4ac<0时,方程没有实数根,但有两个共轭复数根。

2.因式分解的方法也可以用于解决其他类型的方程,如一元三次方程、二元二次方程等。

3.因式分解的方法还可以用于简化多项式的运算,如多项式的乘法、除法、化简等。

将方程x²+5x+6=0表示成(x+m)(x+n)的形式,得到x²+(m+n)x+mn=0。比较系数,得到m+n=5,mn=6。因为m和n是6的两个因数,且它们的和为5,所以m=2,n=3。因此,方程的解为x=-2或x=-3。

综上所述,一元二次方程可以通过因式分解的方法求解。因式分解的方法可以应用于其他类型的方程和多项式的运算中,是代数学中的基本方法之一。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式