共面向量的定义
共面向量的定义:能平移到一个平面上的三个向量称为共面向量。
共面向量定理是数学学科的基本定理之一,属于高中数学立体几何的教学范畴。主要用于证明两个向量共面,进而证明面面垂直等一系列复杂问题。
共面向量是一组有特殊位置关系的向量,即平行于同一个平面的一组向量,零向量与任何仔凳一组共面的向量共面。几何向量的概念在线性代数中经由抽象化,源迅得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。
共面定理的定义为能平移到一个平面雹戚此上的三个向量称为共面向量。共面向量定理是数学学科的基本定理之一。属于高中数学立体几何的教学范畴。主要用于证明两个向量共面,进而证明面面垂直等一系列复杂定理。
详细介绍如下:
共面向量定理:如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是:存在唯一的一对实数x,y,使c=ax+by
三向量共面,例如v,u,z三向量,那么其中任意一个可以表示为其它两个的某种线性组合,即,存在常数a,b,使得z=av+bu。
如果两个向量a.b不共线,则向量p与向量a.b共面的充要条件是存在有序实数对(x.y),使得p=xa+yb。
空间一点P位于平面MAB内的充要条件是存在有序实数对x.y,使MP=xMA+yMB{MP、MA、MB都表示向量}或对空间任一定点O,有OP=OM+xMA+yMB,{OP,OM,MA,MB表示向量}