高中数学圆锥曲线题

已知园c(x-4)^2+(y-m)^2=16(m是正整数)直线4x-3y-16=0过椭圆Ex^2/a^2+y^2/b^2=1(a>b>0)的右焦点,且交园c所得的弦长为3... 已知园c (x-4)^2 +(y-m)^2 =16 (m是正整数) 直线4x-3y-16=0 过椭圆E x^2/a^2 +y^2/b^2 =1 (a>b>0) 的右焦点,且交园c所得的弦长为32/5 ,点A(3,1)在椭圆E上。
1) 求m及椭圆E方程
2)设Q为椭圆E上的一个动点,求向量AC * 向量AQ 的取值范围。
第2问的方法可有简便的?
c 是圆心啊
展开
 我来答
一数陈州
2011-02-04 · TA获得超过1.6万个赞
知道大有可为答主
回答量:4159
采纳率:85%
帮助的人:1438万
展开全部
1、圆心(4,m),圆的半径=4,半弦长=16/5,
圆心到弦的距离利用勾股定理算出=√[4²-(16/5)²]=12/5。
圆心到弦的距离利用点到直线距离公式=|16-3m-16|/5=|3m|/5。
两式相等,求出m=±4。
直线4x-3y-16=0过椭圆右焦点,则y=0时x=4,椭圆c=4.
设椭圆方程为x²/a²+y²/(a²-16)=1,
A(3,1)带入上式,解得a²=18,b²=2,(另一解不合题意,舍)所求椭圆方程为
椭圆方程x²/18+y²/2=1。
2、C是不是圆上的一个点?请补充。
上海华然企业咨询
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支... 点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式