一道关于双曲线的高中数学题~拜托啦~

已知双曲线为x^2/a^2-y^2/b^2=1的顶点为A1,A2,左焦点为F1,P为双曲线右支上任一点,证明:以PF1为直径的圆与以A1A2为直径的圆内切。各位高手帮忙看... 已知双曲线为x^2/a^2-y^2/b^2=1的顶点为A1,A2,左焦点为F1,P为双曲线右支上任一点,证明:以PF1为直径的圆与以A1A2为直径的圆内切。
各位高手帮忙看一下啦~
展开
墓地诗人_
2011-02-06 · TA获得超过227个赞
知道小有建树答主
回答量:113
采纳率:0%
帮助的人:112万
展开全部
要看清事物的本质才是王道!!
你想想看内切有什么性质?不就是两个大圆的半径R(1/2PF1)-小圆的半径r(a)=两圆的圆心距离?
我现在连接PF2 设以PF1为直径的圆圆心为S 连接SO
那么SO不就是三角形F1PF2的中位线么?
所以SO=1/2PF2为两圆圆心距离
又因为PF1-PF2=2a
a=1/2PF1-1/2PF2
所以R-r=1/2PF1-a=1/2PF2=SO
得证
et8733
2011-02-06 · TA获得超过1.3万个赞
知道大有可为答主
回答量:1790
采纳率:100%
帮助的人:859万
展开全部
双曲线:x^2/a^2-y^2/b^2=1,则:
A1(-a,0),A2(a,0),F1(-c,0),F2(c,0),
据题意设点P(x,y),(x>a) 则:x^2/a^2-y^2/b^2=1。
以PF1为直径的圆圆心M为( (x-c)/2,y/2),半径:R=1/2*|PF1|,
|A1A2|=2a,
以A1A2为直径的圆圆心O为( 0,0),半径:r=1/2*|A1A2|=a,
在三角形 F1PF2中,M、O分别是F1P、F1F2的中点,所以
|MO|=1/2|PF2|,
根据双曲线的定义,有
|PF1|-|PF2|=2a ,所以
|MO|=1/2|PF2|=1/2*(|PF1|-2a)=1/2*|PF1|-a=R-r,
所以以PF1为直径的圆与以A1A2为直径的圆内切。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式