1个回答
2011-02-06
展开全部
要证明以AB为直径的圆必与抛物线的准线相切,就要满足圆心O到准线的距离为AB一半(即半径)。
已知A(X1,Y1),B(X2,Y2),设焦点为F
因为抛物线上任一点到焦点的距离等于其到准线的距离
所以AB=AF+BF=X1+P/2+X2+P/2=X1+X2+P
而O为AB的中点,坐标为([X1+X2]/2,Y1+Y2/2)
所以O到准线的距离= [X1+X2]/2+P/2=AB/2
得证
已知A(X1,Y1),B(X2,Y2),设焦点为F
因为抛物线上任一点到焦点的距离等于其到准线的距离
所以AB=AF+BF=X1+P/2+X2+P/2=X1+X2+P
而O为AB的中点,坐标为([X1+X2]/2,Y1+Y2/2)
所以O到准线的距离= [X1+X2]/2+P/2=AB/2
得证
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询