如图是二次函数y=(x+m)^2+k的图象,其顶点坐标为M(1,-4)

(2)在二次函数的图象上是否存在点P,使S△PAB=5/4S△MAB,若存在,求出P点的坐标;若不存在,请说明理由;(3)将二次函数的图象在x轴下方的部分沿x轴翻折,图象... (2)在二次函数的图象上是否存在点P,使S△PAB=5/4S△MAB,若存在,求出P点的坐标;若不存在,请说明理由;
(3)将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线y=x+b(b<1)与此图象有两个公共点时,b的取值范围。
展开
niyuan_hn
推荐于2016-12-02 · TA获得超过835个赞
知道小有建树答主
回答量:264
采纳率:0%
帮助的人:207万
展开全部
(2) P点有两个(-2,5)(4,5)
因m=-1,k=-4,S△PAB=5/4S△MAB=10
而AB=4,则只需|y|=5,又y的最小值为-4 ,所以y应在x轴上方找,即y=5时,x=-2或4,△PAB=10
(3)结合新图像,b=1时,与中间一段y=-(x-1)^2+4有二交点,-3<b<1时与中间一段有1个交点,此时恰好与右侧一段又有一个交点(共2个),而b=-3时有一个交点,b<-3时没有交点。则所求范围应是-3<b<1
efz_caiyj
2011-02-06 · TA获得超过633个赞
知道答主
回答量:51
采纳率:0%
帮助的人:57.4万
展开全部
(1)∵M为顶点(最低点),∴函数解析式为 y=(x-1)² - 4
∵S△PAB=5/4S△MAB 且这两个三角形是同底的,
∴面积之比即为高之比,即P点纵坐标为5
∴ 将y = 5代入函数解析式
得P为(-2,5)(4,5)
(2)抛物线与x轴的交点为 y = 0
(x-1)² - 4=0,x=-1或3,两交点为(-1,0)(3,0)
将图形翻折后得到的函数为分段函数
当x<-1或x>3时 y=(x-1)² - 4
当-1<x<3时,y= - (x-1)² + 4
函数图像变为:\/\/ 形,是关于直线x=1对称的图象,最左右两边可以向上无限延伸
当y=x+b与对称轴右边两支相交时只有两个交点,-3<x<1
当y=x+b与最左右两支相交而不与中间相交时也只有两个交点,
- (x-1)² + 4=x+b 有唯一的解 x² -x+b-3=0,△ = 1-4(b-3)=0,b=13/4
∴当b>13/4时也有两个交点
∴当b>13/4或-3<x<1时直线与抛物线有两个交点
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
sudokumaster
2012-12-14 · TA获得超过3265个赞
知道答主
回答量:215
采纳率:0%
帮助的人:68.4万
展开全部
解:no1:
在y=(x-1)^2-4中
令y=0
(x-1)^2-4=0
(x-1)^2=4
x-1=±2
∴x1=3 x2=-1
∴A(-1,0)B(3,0)

no2:作PQ⊥x轴于Q
∴1/2·AB·PQ=5/4·1/2·AB·4
∴PQ=5
∴Yp=5
或Yp=-5(舍去)
∴(x-1)^2-4=5
∴(x-1)^2=9
∴x-1=±3
x1=4,x2=-2
∴P(4,5)或P(-2,5)

no3:若直线y=x+b经过B点
∴3+b=3

∴b=-3

若直线y=x+b经过A点
∴-b+1=0<>
∴b=1
∴-3<b<1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
2436427257
2012-12-20 · TA获得超过371个赞
知道答主
回答量:47
采纳率:0%
帮助的人:11.7万
展开全部
(1)、∵二次函数Y=(x+m)^2+k的图像,其顶点坐标为M(1,-4)
∴m=-1,k=-4
函数的解析式是:Y=(x-1)²-4。
当y=0时,(x-1)²-4=0
即:x²-2x-3=0
(x-3)(x+1)=0
x1=-1,x2=3
所以:A点的坐标是(-1,0);B点的坐标是(3,0)。

(2)S△MAB=1/2×|3-(-1)|×|-4|=8
S△PAB=5/4S△MAB=5/4×8=10
△PAB以AB为底的高=10×2÷|3-(-1)|=5
所以:(x-1)²-4=5
即:x²-2x-8=0
(x+2)(x-4)=0
x3=-2,x4=4
那么:P点在(-2,5)或者(4,5)时,S△PAB=5/4S△MAB。

(3)y=x+b经过B点(4,0)时,4+b=0,b=-4,与图像有一个交点;
y=x+b经过A(-1,0)点时,-1+b=0,b=1,与图像有三个交点;
y=x+b经过M'(1,4)点时,1+b=4,b=3,与图像有三个交点;
所以:当直线y=x+b(b<1)与此图像有两个公共点时,b的取值范围是-4<b<1或者b>3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式