2个回答
展开全部
先设一条直线AB,方程y=ax+b,然后可以求出用ab表示的的圆心O到直线AB的距离h,又通过直线AB的方程和椭圆的方程可以求出用ab表示的A、B两点的距离d,然后可求出用ab表示的ABO面积代数式(0.5dh),这时求出代数式最大值的取值,这就是所求面积的最大值
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:2x²+y²=2
x²+y²/2=1
a²=2,b²=1,c²=2-1=1
焦点(0,1)(0,-1)
设过焦点的直线为y=kx+1
代入
2x²+k²x²+2kx+1=2
(k²+2)x²+2kx-1=0
x1+x2=-2k/(k²+2)
x1×x2=-1/(k²+2)
原点到AB的距离d=1/√(1+k²)
S△AOB=1/2×1/√(1+k²)×√(1+k²)[(x1+x2)²-4x1x2]
=√[k²/(k²+2)²+/(k²+2)]
=√(k²+k²+2)/(k²+2)²
=√2×√(k²+1)/(k²+2)²
=√2×√[1/(k²+2)-1/(k²+2)²]
令y=1/(k²+2)-1/(k²+2)²,x=1/(k²+2)
y=x-x²=-(x²-x)=-(x-1/2)²+1/4
当x=1/2时,y有最大值=1/4
此时k=0
S三角形最大值=√2/2
当直线过焦点(0,-1)时,过程一样
x²+y²/2=1
a²=2,b²=1,c²=2-1=1
焦点(0,1)(0,-1)
设过焦点的直线为y=kx+1
代入
2x²+k²x²+2kx+1=2
(k²+2)x²+2kx-1=0
x1+x2=-2k/(k²+2)
x1×x2=-1/(k²+2)
原点到AB的距离d=1/√(1+k²)
S△AOB=1/2×1/√(1+k²)×√(1+k²)[(x1+x2)²-4x1x2]
=√[k²/(k²+2)²+/(k²+2)]
=√(k²+k²+2)/(k²+2)²
=√2×√(k²+1)/(k²+2)²
=√2×√[1/(k²+2)-1/(k²+2)²]
令y=1/(k²+2)-1/(k²+2)²,x=1/(k²+2)
y=x-x²=-(x²-x)=-(x-1/2)²+1/4
当x=1/2时,y有最大值=1/4
此时k=0
S三角形最大值=√2/2
当直线过焦点(0,-1)时,过程一样
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询