已知椭圆的方程2x^2+y^2=2,过一焦点的直线与椭圆交与A、B两点。求三角形ABO(O为原点)的面积的最大值

具体!!!... 具体!!! 展开
将将紫
2011-02-07
知道答主
回答量:26
采纳率:0%
帮助的人:8.2万
展开全部
先设一条直线AB,方程y=ax+b,然后可以求出用ab表示的的圆心O到直线AB的距离h,又通过直线AB的方程和椭圆的方程可以求出用ab表示的A、B两点的距离d,然后可求出用ab表示的ABO面积代数式(0.5dh),这时求出代数式最大值的取值,这就是所求面积的最大值
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
78101557
高赞答主

2011-02-07 · 点赞后记得关注哦
知道大有可为答主
回答量:2万
采纳率:75%
帮助的人:1.2亿
展开全部
解:2x²+y²=2
x²+y²/2=1
a²=2,b²=1,c²=2-1=1
焦点(0,1)(0,-1)
设过焦点的直线为y=kx+1
代入
2x²+k²x²+2kx+1=2
(k²+2)x²+2kx-1=0
x1+x2=-2k/(k²+2)
x1×x2=-1/(k²+2)
原点到AB的距离d=1/√(1+k²)
S△AOB=1/2×1/√(1+k²)×√(1+k²)[(x1+x2)²-4x1x2]
=√[k²/(k²+2)²+/(k²+2)]
=√(k²+k²+2)/(k²+2)²
=√2×√(k²+1)/(k²+2)²
=√2×√[1/(k²+2)-1/(k²+2)²]
令y=1/(k²+2)-1/(k²+2)²,x=1/(k²+2)
y=x-x²=-(x²-x)=-(x-1/2)²+1/4
当x=1/2时,y有最大值=1/4
此时k=0
S三角形最大值=√2/2
当直线过焦点(0,-1)时,过程一样
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式