高二数学三题

1.如图所示(上面是墙),要用铁丝网围虎舍四间,一面墙可用,现有36m的材料,当每间长宽各位多少时,可使每间面积最大?2.甲乙两位采购员去一家公司采购粮食,两次价格不同,... 1.如图所示(上面是墙),要用铁丝网围虎舍四间,一面墙可用,现有36m的材料,当每间长宽各位多少时,可使每间面积最大?
2.甲乙两位采购员去一家公司采购粮食,两次价格不同,其中甲每次购买1000kg,乙每次购粮用去1000元,问谁的方式更合算?
3.在等比数列{an}中,公比q是整数,a1+a4=18,a2+a3=12,则此数列前八项和为多少?
够详细还加分!!!
展开
TC闪电CAT
2011-02-07 · TA获得超过399个赞
知道答主
回答量:33
采纳率:0%
帮助的人:0
展开全部
解1:设长为x,那么宽度为(36-2x)/3,,∴总面积S=x×(36-2x)/3=12x-(2/3)x*2
此为一二次函数,当x=—12/(—4/3)=9cm时S取得最大值,此时每间的面积S/4也取得最大值,
这时可求得宽为6cm。
2:题意是比较每千克粮食的均价大小。设均价用A(甲),A(乙)表示。
设两次的价格分别为m,n(m≠n)。显然A(甲)=(m+n)/2
乙两次买回的粮食总量为M(乙)=1000/m + 1000/n
∴A(乙)=2000/M(乙)=2mn/(m+n)
现在比较A(甲),A(乙)的大小:
由基本不等式m+n≥2√mn(两倍根号mn),平方得(m+n)*2≥4mn
移项可得(m+n)/2≥2mn/(m+n)∵m≠n∴不取等号,即A(甲)>A(乙)
所以乙的方式更合算。
3:a1+a4=a1+a1q*3=a1(1+q*3)=18
a2+a3=a1(q+q*2)=12 两式相除可得q=2或0.5(舍)
a1+a2+a3+a4=30,a5=a1q*4=16a1,a6=16a2……∴a5+a6+a7+a8=16(a1+a2+a3+a4)
∴S(8)=30+16×30=510.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式