已知双曲线的方程是16x^2-9y^2=144 1)求双曲线的交点坐标,离心率,和渐近线方程;
2)设F1.F2是双曲线的左、右焦点,点P在双曲线上,且|PF1|×|PF2|=32,求角F1PF2的大小...
2)设F1.F2是双曲线的左、右焦点,点P在双曲线上,且|PF1|×|PF2|=32,求角F1PF2的大小
展开
1个回答
展开全部
1) 解:由题得:a=3, b=4, c=5
所以,焦点坐标:F1(-5, 0) ,F2(5, 0)
离心率:e=c/a=5/3
渐近线方程:y=(4/3)x 和y=-(4/3)x
2) 解:由双曲线的定义:||PF1|-|PF2||=2a=6
所以, |PF1|²-2|PF1|×|PF2|+|PF2|²=36
由题知:|PF1|×|PF2|=32
所以,|PF1|²+|PF2|²=36+2*32=100
因为,|F1F2|=10
所以,|PF1|²+|PF2|²=100=10²=|F1F2|²
所以,△F1PF2是直角三角形,且∠F1PF2=90°
所以,∠F1PF2=90°
所以,焦点坐标:F1(-5, 0) ,F2(5, 0)
离心率:e=c/a=5/3
渐近线方程:y=(4/3)x 和y=-(4/3)x
2) 解:由双曲线的定义:||PF1|-|PF2||=2a=6
所以, |PF1|²-2|PF1|×|PF2|+|PF2|²=36
由题知:|PF1|×|PF2|=32
所以,|PF1|²+|PF2|²=36+2*32=100
因为,|F1F2|=10
所以,|PF1|²+|PF2|²=100=10²=|F1F2|²
所以,△F1PF2是直角三角形,且∠F1PF2=90°
所以,∠F1PF2=90°
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询