抛物线y的平方=8x上有点p(2,4 )以点p为一个顶点,作抛物线的内接三角形PQR,使三角形的重心是抛物线

的焦点,求QR所在直线的方程... 的焦点,求QR所在直线的方程 展开
匿名用户
2011-02-09
展开全部
y²=2px=8x
所以p/2=2
所以焦点(2,0)
设Q(a,b)
R(c,d)
P(2,4)
重心(2,0)
所以(2+a+c)/3=2
(4+b+d)/3=0
a+c=4,b+d=-4

QR在y²=8x
b²=8a,d²=8c
8a+8c=b²+d²
所以32=(b+d)²-2bd=16-2bd
bd=-8
b=-4-d
-4d-d²=-8
d²+4d-8=0
d=-2±2√3

所以b=-2+2√3,d=-2-2√3
或b=-2-2√3,d=-2+2√3
若取第一组
a=b²/8=2-√3,c=2+√3
所以k=(b-d)/(a-c)=-2
若取第二组,k=2

所以y-(-2-2√3)=2[x-(2+√3)]
和y-(-2+2√3)=-2[x-(2-√3)]
即2x-y-6-4√3=0和2x+y-2=0
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式