高中数学题:已知a>0,数列{an}满足a1=a,an+1=a+1/an,n=1,2,3……
(1)已知数列{an}的极限存在且大于0,求A=liman(将A用a表示)(2)设bn=an-A,n=1,2,3……证明:bn+1=(-bn)/A(A+bn)...
(1)已知数列{an}的极限存在且大于0,求A=liman(将A 用a 表示)
(2)设bn=an-A ,n=1,2,3……证明:bn+1=(-bn) / A(A+bn) 展开
(2)设bn=an-A ,n=1,2,3……证明:bn+1=(-bn) / A(A+bn) 展开
2个回答
展开全部
你那里是个链分数,你把它写开就能看到了
an+1=a+1/an=an+1=a+1/[a+1/[a+a(n-1)]=a+1/{a+1/{a+……
即有,A=a+1/A,A>0
所以,A=[a+√(a^2+4)]/2
2,
(-bn) / A(A+bn)=(A-an) /A(an-A+A)=)=(A-an) /(A*an)=1/an-1/A=1/an-2/[a+√(a^2+4)]
=1/an-2[a-√(a^2+4)]/[a^2-(a^2+4)]=1/an+[a-√(a^2+4)]/2=1/an+a-[a+√(a^2+4)]/2
=a(n+1)-A=b(n+1)
a,b后面小括号内跟的是下标
an+1=a+1/an=an+1=a+1/[a+1/[a+a(n-1)]=a+1/{a+1/{a+……
即有,A=a+1/A,A>0
所以,A=[a+√(a^2+4)]/2
2,
(-bn) / A(A+bn)=(A-an) /A(an-A+A)=)=(A-an) /(A*an)=1/an-1/A=1/an-2/[a+√(a^2+4)]
=1/an-2[a-√(a^2+4)]/[a^2-(a^2+4)]=1/an+[a-√(a^2+4)]/2=1/an+a-[a+√(a^2+4)]/2
=a(n+1)-A=b(n+1)
a,b后面小括号内跟的是下标
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询