设向量a=(3/2,sin θ),b=(cosθ,1/3),其中0<θ<π/2,若a//b,求θ
3个回答
展开全部
向量a=(3/2,sin θ),b=(cosθ,1/3),其中0<θ<π/2,a//b,
∴(3/2)/cosθ=sinθ/(1/3),
∴2sinθcosθ=1,
∴sin2θ=1,
0<2θ<2π,
∴2θ=π/2,
θ=π/4.
∴(3/2)/cosθ=sinθ/(1/3),
∴2sinθcosθ=1,
∴sin2θ=1,
0<2θ<2π,
∴2θ=π/2,
θ=π/4.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:向量a=(3/2,sinx),b=(cosx,1/3).0<x<π/2.
∵向量a‖b. ∴由向量共线的充要条件可知:
存在实数t,满足a=tb.即:(3/2,sinx)=t(cosx,1/3).
∴tcosx=3/2.且sinx=t/3.消去t,可得:
3sinxcosx=3/2. ∴sin(2x)=1.又0<x<π/2.
∴2x=π/2. ∴x=π/4.
∵向量a‖b. ∴由向量共线的充要条件可知:
存在实数t,满足a=tb.即:(3/2,sinx)=t(cosx,1/3).
∴tcosx=3/2.且sinx=t/3.消去t,可得:
3sinxcosx=3/2. ∴sin(2x)=1.又0<x<π/2.
∴2x=π/2. ∴x=π/4.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询