如图;二次函数Y=-1/2X平方+C的图像经过点D(负根号3,9/2),与X轴交于A,B两点。 5

1,求C的值?2,设点C为该二次函数的图像在X轴上方的一点,直线AC将四边形ABCD的面积二等分,试证明线段BD被直线AC平分,并求此时直线AC的函数解析式。... 1,求C的值?
2,设点C为该二次函数的图像在X轴上方的一点,直线AC将四边形ABCD的面积二等分,试证明线段BD被直线AC平分,并求此时直线AC的函数解析式。
展开
916259757
2012-04-09
知道答主
回答量:20
采纳率:0%
帮助的人:11.6万
展开全部
分析:(1)将D点坐标代入抛物线的解析式中,即可求出待定系数c的值;
(2)若△ACD与△ABC的面积相等,则两个三角形中,AC边上的高相等,设AC、BD的交点为E,若以CE为底,AC边上的高为高,可证得△CED和△CEB的面积相等;这两个三角形中,若以DE、BE为底,则两个三角形同高,那么DE=BE,由此可证得AC平分BD;
由于E是BD的中点,根据B、D的坐标,即可求出E点的坐标,根据A、E的坐标即可用待定系数法求出直线AC的解析式;
(3)由于△ABP是直角三角形,且P点在x轴上方的抛物线上,那么P必为直角顶点,即∠APB=90°,若Rt△AQP全等于Rt△ABP,且Q点在x轴上方的抛物线上,那么∠APQ也必为直角,由此可得B、P、Q三点共线,而一条直线与抛物线的交点最多有两个,显然这种情况不成立,所以不存在符合条件的P、Q点.
解答:解:(1)∵抛物线经过D(﹣ ),则有:
﹣×3+c=,解得c=6;

(2)设AC与BD的交点为E,过D作DM⊥AC于M,过B作BN⊥AC于N;
∵S△ADC=S△ACB,
∴AC•DM=AC•BN,即DM=BN;
∴CE•DM=CE•BN,
即S△CED=S△BEC(*);
设△BCD中,BD边上的高为h,由(*)得:
DE•h=BE•h,即BE=DE,故AC平分BD;
易知:A(﹣2 ,0),B(2 ,0),D(﹣ ,),
由于E是BD的中点,则E( ,);
设直线AC的解析式为y=kx+b,则有:

解得 ;
∴直线AC的解析式为y=x+;

(3)由于P、Q都在x轴上方的抛物线上,若△APB是直角三角形,则∠APB=90°;
若Rt△AQP全等于Rt△ABP,则AB=AQ,∠APQ=∠APB,即B、P、Q三点共线;
显然一条直线不可能与一个抛物线有3个交点,
故不存在符号条件的P、Q点.
11...1@qq.com
2012-12-03
知道答主
回答量:1
采纳率:0%
帮助的人:1548
展开全部
如图,二次函数y=
12x2-x+c的图象与x轴分别交于A、B两点,顶点M关于x轴的对称点是M′.
(1)若A(-4,0),求二次函数的关系式;
(2)在(1)的条件下,求四边形AMBM′的面积;
(3)是否存在抛物线y=
12x2-x+c,使得四边形AMBM′为正方形?若存在,请求出此抛物线的函数关系式;若不存在,请说明理由.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
sky塞小夏
2014-09-22
知道答主
回答量:17
采纳率:0%
帮助的人:6.9万
展开全部
分析:(1)将D点坐标代入抛物线的解析式中,即可求出待定系数c的值;
(2)若△ACD与△ABC的面积相等,则两个三角形中,AC边上的高相等,设AC、BD的交点为E,若以CE为底,AC边上的高为高,可证得△CED和△CEB的面积相等;这两个三角形中,若以DE、BE为底,则两个三角形同高,那么DE=BE,由此可证得AC平分BD;
由于E是BD的中点,根据B、D的坐标,即可求出E点的坐标,根据A、E的坐标即可用待定系数法求出直线AC的解析式;
(3)由于△ABP是直角三角形,且P点在x轴上方的抛物线上,那么P必为直角顶点,即∠APB=90°,若Rt△AQP全等于Rt△ABP,且Q点在x轴上方的抛物线上,那么∠APQ也必为直角,由此可得B、P、Q三点共线,而一条直线与抛物线的交点最多有两个,显然这种情况不成立,所以不存在符合条件的P、Q点.
解答:解:(1)∵抛物线经过D(﹣ ),则有:
﹣×3+c=,解得c=6;

(2)设AC与BD的交点为E,过D作DM⊥AC于M,过B作BN⊥AC于N;
∵S△ADC=S△ACB,
∴AC•DM=AC•BN,即DM=BN;
∴CE•DM=CE•BN,
即S△CED=S△BEC(*);
设△BCD中,BD边上的高为h,由(*)得:
DE•h=BE•h,即BE=DE,故AC平分BD;
易知:A(﹣2 ,0),B(2 ,0),D(﹣ ,),
由于E是BD的中点,则E( ,);
设直线AC的解析式为y=kx+b,则有:

解得 ;
∴直线AC的解析式为y=x+;

(3)由于P、Q都在x轴上方的抛物线上,若△APB是直角三角形,则∠APB=90°;
若Rt△AQP全等于Rt△ABP,则AB=AQ,∠APQ=∠APB,即B、P、Q三点共线;
显然一条直线不可能与一个抛物线有3个交点,
故不存在符号条件的P、Q点.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式