在自然数1-2011中,最多可以取出( )个数,使得这些数中任意四个数的和都不能被11整除。
7个回答
展开全部
除以11的余数有11种
余数和从0到11的,可以选余数是1和2的
余数和从11到22的,可以选余数是3、4和5的
余数和从22到33的,可以选余数是6、7和8的
余数和从33到44的,可以选余数是9和10
无论怎样选,没有余数的都不能超过3个。
2011÷11=182……9,
可以全选余数是3、4、5的,因为3×4=12,5×4=20,
在20和22之间还可以有一个21,所以还可以选一个余数是6的。
所以是183×3+1=550
这种选法能选到550,
当然选余数是6、7、8和一个余数是5的,还是是可以选出550个
前面的选法,都是在同一个区域里面选的,我有一个想法,不知道结果如何,就是从四个区域里面去选,看能不能选出四组或更多。
余数和从0到11的,可以选余数是1和2的
余数和从11到22的,可以选余数是3、4和5的
余数和从22到33的,可以选余数是6、7和8的
余数和从33到44的,可以选余数是9和10
无论怎样选,没有余数的都不能超过3个。
2011÷11=182……9,
可以全选余数是3、4、5的,因为3×4=12,5×4=20,
在20和22之间还可以有一个21,所以还可以选一个余数是6的。
所以是183×3+1=550
这种选法能选到550,
当然选余数是6、7、8和一个余数是5的,还是是可以选出550个
前面的选法,都是在同一个区域里面选的,我有一个想法,不知道结果如何,就是从四个区域里面去选,看能不能选出四组或更多。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
答案应该是915个,就取余数为奇数的,即余1、3、5、7、9的各有183个,183×5=915个。因为四个奇数之和不可能是奇数,所以必定不是11的倍数。所以最多取915个。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
不同意“100题”小册子中的答案,支持“风雨数学520”,答案为550。
从余数6、7、8中任选四个,余数和范围为24~32,这些数都不是11的倍数,
余数和还可以是23,所以再加一个余数是5的,共有183×3+1=550
从余数6、7、8中任选四个,余数和范围为24~32,这些数都不是11的倍数,
余数和还可以是23,所以再加一个余数是5的,共有183×3+1=550
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询