已知在Rt△ABC中,c为斜边长,a,b为直角边长,求证:log2[1+(b +c)/a]+log2[1+(a-c)/b]=1
1个回答
展开全部
证明:∵Rt△ABC中,c为斜边长,a,b为直角边
∴ c²=a²+b²
从而 log2[1+(b +c)/a]+log2[1+(a-c)/b]=log2[(a+b+c)/a]+log2[(b+a-c)/b]
=log2[(a+b+c)(b+a-c)/(ab)]
=log2[(a+b)²-c²)/(ab)]
=log2[(a²+2ab+b²-c²/(ab)] ①
∵ c²=a²+b²
∴a²+2ab+b²-c²=c²-2ab-c²=2ab
从而①成为 log2[2ab/(ab)]=log2[2]=1
∴ log2[1+(b +c)/a]+log2[1+(a-c)/b]=1
∴ c²=a²+b²
从而 log2[1+(b +c)/a]+log2[1+(a-c)/b]=log2[(a+b+c)/a]+log2[(b+a-c)/b]
=log2[(a+b+c)(b+a-c)/(ab)]
=log2[(a+b)²-c²)/(ab)]
=log2[(a²+2ab+b²-c²/(ab)] ①
∵ c²=a²+b²
∴a²+2ab+b²-c²=c²-2ab-c²=2ab
从而①成为 log2[2ab/(ab)]=log2[2]=1
∴ log2[1+(b +c)/a]+log2[1+(a-c)/b]=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询