设a,b∈R,且a≠2,定义在区间(-b,b)内的函数f(x)=lg(1+ax)/(1+2x)恒满足f(-x)=-f(x) 1.求b的取值范围
展开全部
f(x)=-f(-x)
即lg(1+ax)/(1+2x)=-lg(1-ax)/(1-2x)
所以(1+ax)/(1+2x)=(1-2x)/(1-ax)
即1-a^2x^2=1-4x^2
所以a^2=4,因为a≠2
所以a=-2
那么f(x)=lg(1-2x)/(1+2x),定义域为(-1/2,1/2)
所以b的取值范围是(0,1/2]
(2)解:令g(x)=(1-2x)/(1+2x)x∈(-1/2,1/2)
那么g'(x)=-4/(1+2x)^2<=0
所以函数g(x)在定义域上是减函数
而函数y=lgx在定义域上是增函数,所以根据复合函数单调性可知
y=f(x)在(-1/2,1/2)上是减函数
即lg(1+ax)/(1+2x)=-lg(1-ax)/(1-2x)
所以(1+ax)/(1+2x)=(1-2x)/(1-ax)
即1-a^2x^2=1-4x^2
所以a^2=4,因为a≠2
所以a=-2
那么f(x)=lg(1-2x)/(1+2x),定义域为(-1/2,1/2)
所以b的取值范围是(0,1/2]
(2)解:令g(x)=(1-2x)/(1+2x)x∈(-1/2,1/2)
那么g'(x)=-4/(1+2x)^2<=0
所以函数g(x)在定义域上是减函数
而函数y=lgx在定义域上是增函数,所以根据复合函数单调性可知
y=f(x)在(-1/2,1/2)上是减函数
展开全部
因为是奇函数,所以满足f(x)=-f(-x)
即lg(1+ax)/(1+2x)=-lg(1-ax)/(1-2x)
所以(1+ax)/(1+2x)=(1-2x)/(1-ax)
即1-a^2x^2=1-4x^2
所以a^2=4,因为a≠2
所以a=-2
那么f(x)=lg(1-2x)/(1+2x),定义域为(-1/2,1/2)
所以b的取值范围是(0,1/2]
(2)解:令g(x)=(1-2x)/(1+2x)x∈(-1/2,1/2)
那么g'(x)=-4/(1+2x)^2<=0
所以函数g(x)在定义域上是减函数
而函数y=lgx在定义域上是增函数,所以根据复合函数单调性可知
y=f(x)在(-1/2,1/2)上是减函数
即lg(1+ax)/(1+2x)=-lg(1-ax)/(1-2x)
所以(1+ax)/(1+2x)=(1-2x)/(1-ax)
即1-a^2x^2=1-4x^2
所以a^2=4,因为a≠2
所以a=-2
那么f(x)=lg(1-2x)/(1+2x),定义域为(-1/2,1/2)
所以b的取值范围是(0,1/2]
(2)解:令g(x)=(1-2x)/(1+2x)x∈(-1/2,1/2)
那么g'(x)=-4/(1+2x)^2<=0
所以函数g(x)在定义域上是减函数
而函数y=lgx在定义域上是增函数,所以根据复合函数单调性可知
y=f(x)在(-1/2,1/2)上是减函数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询