高一的平面向量问题

已知向量a、b、c(上面的箭头我就不标了,大家见谅)和实数λ则有(a+b)*c=a*c+b*c这个要怎么理解的?或者说能不能简单地证明一下?(λa)*b=λ(a*b)=a... 已知向量a、b、c(上面的箭头我就不标了,大家见谅)和实数λ
则有(a+b)*c=a*c+b*c这个要怎么理解的?或者说能不能简单地证明一下?
(λa)*b=λ(a*b)=a*(λb)→如果这里的λ也变成一个向量,那么这个等式还成立吗

向量a有a*a=|a|^2,推广后可以得到:a^3 -b^3=(a-b)(a^2+ab+b^2),这个我也不是很理解是不是说a^n=|a|^n然后把a看成|a|??麻烦大家解释下,谢谢!

书上说直线Ax+By+C=0的方向向量v=(-B,A),它的法向量为n=(A,B)
我想说,可以把已知直线平移至通过原点后再来求方向向量和法向量,分别根据k值相等和互为负倒数来解,这样理解对吗?还有哪些解法?这里的方向向量和法向量不是应该是无数多个的吗?那它这样表示是什么意思?麻烦大家,谢谢!
展开
百度网友3917afa
2011-02-18 · TA获得超过296个赞
知道答主
回答量:102
采纳率:0%
帮助的人:0
展开全部
设a(x1,x2,x3,...,xn),B(y1,y1,...,yn),c(z1,z2,...,zn)
则(a+b)c=(x1+y1,x2+y2,...,xn+yn)*(z1,z2,...,zn)=(x1z1+y1z1,x2z2+y2z2,...,xnzn+ynzn)=ac+bc

(λa)*b=(λx1y1,λx2y2,...,λxnyn)=λ(ab)=a(λb)

当λ为向量时,不成立
λ(a*b)沿λ方向
(λa)*b沿b方向
a*(λb)沿a方向
明显不等

有(a+b)*c=a*c+b*c
即有分配律
则易证a^3 -b^3=(a-b)(a^2+ab+b^2)

方向向量即方向与原直线一样的向量
因为向量可平移,你那么讲没大问题,但当斜率不存在或等于0时就不能这么讲了

因为设a为方向向量,b为法向量,当λ≠0时不存在时,λa也是方向向量,λb也是法向量,有无限多个
这种表示只是方便写出方向向量和法向量而已,有了方程便可直接写出这两个向量,不用算
卷天巧0Jg167
2011-02-12 · 超过14用户采纳过TA的回答
知道答主
回答量:47
采纳率:0%
帮助的人:24.9万
展开全部
(a+b)*c=a*c+b*c可以理解为在a与b的合力在c方向上所做的功,等于a力在c方向上所做的功加上b力在c方向上所做的功的和。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
luoyu0920
2011-02-23
知道答主
回答量:4
采纳率:0%
帮助的人:0
展开全部
空间向量到平面的距离,就是向量的两个端点到平面的距离,取最短的那一个长度,就是空间向量到一个平面的问题。

点到平面向量的距离:先建立空间直角坐标系,x、y、z轴。设该平面为“平面ABC”设该点为P。然后用向量表示向量PA。你事先知道四个点的坐标。A(1,1,1),B(2,2,3),C(0,0,3),P(1,4,2).则向量PA(1-1,1-4,1-2)
向量AB(1-2,1-2,1-3),向量AC(1-0,1-0,1-3)
算得向量PA(0,-3,-1)AB(-1,-1,-2) AC(1,1,-2)
设向量n(x,y,z)垂直于平面ABC
则有:AB·n=0
AC·n=0
得-x-y-2z=0
x+y-2z=0
设x=1,则解得z=0,y=-1
所以向量n(1,-1,0)
向量n与向量PA的夹角设为a
则由公式cos a=cos<n,PA>=((0*1)+(-3*-1)+(-1*0))/(根号下(1平方+(-1)平方+0)*根号下(0+(-3)平方+(-1)平方))
=cos 3/根号18
所以夹角为arccos 3/根号18
择点P到平面ABC的距离为(0+(-3)平方+(-1)平方)* arccos 3/根号18
=10 * arccos3/根号18

啊,终于打完了,不知你看懂没有,这是高中的内容,如果你没看懂的话,可以再复习一下高三数学的课本。
有很多符号打不出来,就用汉字代替了,见谅。
看在我打了这么多的份上,把我的选为最佳答案吧。祝你搞懂这个问题。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式