设向量a=(cosα,sinα),b=(cosβ,sinβ)
(1)若a-b=(-2/3,1/3),求cos<a,b>(2)若cos<a,b>=60°,那么t为何值│a-tb│的值最小?...
(1)若a-b=(-2/3,1/3),求cos<a,b>
(2)若cos<a,b>=60°,那么t为何值│a-tb│的值最小? 展开
(2)若cos<a,b>=60°,那么t为何值│a-tb│的值最小? 展开
1个回答
展开全部
(1) cos<a, b> = a•b /∣a∣∣b∣
= (cosα, sinα)•(cosβ, sinβ) / [√(cos²α+sin²α) * √(cos²β+sin²β)]
= (cosαcosβ + sinαsinβ) / √1 * √1
= cosαcosβ + sinαsinβ
∵a - b = (-2/3, 1/3)
∴(cosα, sinα) - (cosβ, sinβ) = (-2/3, 1/3)
(cosα-cosβ, sinα-sinβ) = (-2/3, 1/3)
比较系数, 得cosα - cosβ = -2/3 ~ (1)
sinα - sinβ = 1/3 ~ (2)
(1)² + (2)²: (cos²α - 2cosαcosβ + cos²β) + (sin²α - 2sinαsinβ + sin²β) = 4/9 + 1/9
化简: 2 - 2(cosαcosβ + sinαsinβ) = 5/9
得: cosαcosβ + sinαsinβ = 13/18
∴所求: cos<a, b> = 13/18
(2) ∣a - tb∣= √(a - tb)²
= √(a² - 2ta•b + b²)
= √(∣a∣² - 2t∣a∣∣b∣cos<a, b> + ∣b∣²)
= √[(cos²α+sin²α) - 2t√(cos²α+sin²α)*√(cos²β+sin²β)cos60° + (cos²β+sin²β)]
= √(1 - 2t * 1 * 1 * 1/2 + 1)
= √(2 - t)
∵∣a - tb∣≥ 0
∴ √(2 - t)≥ 0
得t = 2时, ∣a - tb∣取得最小值.
= (cosα, sinα)•(cosβ, sinβ) / [√(cos²α+sin²α) * √(cos²β+sin²β)]
= (cosαcosβ + sinαsinβ) / √1 * √1
= cosαcosβ + sinαsinβ
∵a - b = (-2/3, 1/3)
∴(cosα, sinα) - (cosβ, sinβ) = (-2/3, 1/3)
(cosα-cosβ, sinα-sinβ) = (-2/3, 1/3)
比较系数, 得cosα - cosβ = -2/3 ~ (1)
sinα - sinβ = 1/3 ~ (2)
(1)² + (2)²: (cos²α - 2cosαcosβ + cos²β) + (sin²α - 2sinαsinβ + sin²β) = 4/9 + 1/9
化简: 2 - 2(cosαcosβ + sinαsinβ) = 5/9
得: cosαcosβ + sinαsinβ = 13/18
∴所求: cos<a, b> = 13/18
(2) ∣a - tb∣= √(a - tb)²
= √(a² - 2ta•b + b²)
= √(∣a∣² - 2t∣a∣∣b∣cos<a, b> + ∣b∣²)
= √[(cos²α+sin²α) - 2t√(cos²α+sin²α)*√(cos²β+sin²β)cos60° + (cos²β+sin²β)]
= √(1 - 2t * 1 * 1 * 1/2 + 1)
= √(2 - t)
∵∣a - tb∣≥ 0
∴ √(2 - t)≥ 0
得t = 2时, ∣a - tb∣取得最小值.
黄先生
2024-12-27 广告
2024-12-27 广告
北京蓝宝、广州宏控、广州迈拓维矩、广州快捷等。在性价比方面,选择广州迈拓维矩矩阵切换器,性价比较高,6道测试工序,质量有保证。有以下优点:1.所有产品都是模块化设计,方便维护。2.矩阵都有输出长线驱动的设计,即插即用,不需要设置。3.软硬件...
点击进入详情页
本回答由黄先生提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询