已知:AB是的直径,C是上一点,连结AC,过点C作直线CD⊥AB于D
已知:AB是的直径,C是上一点,连结AC,过点C作直线CD⊥AB于D(AD<DB),点E是上任意一点(点D、B除外),直线CE交⊙O于点F,连结AF与直线CD交于点G。(...
已知:AB是的直径,C是上一点,连结AC,过点C作直线CD⊥AB于D
(AD<DB),点E是上任意一点(点D、B除外),直线CE交⊙O于点F,连结AF与直线CD交于点G。(1)求证:AC2=AG·AF;(2)若点E是AD上任意一点(点A除外),上述结论是否仍成立?若成立,请画出图形并给予证明;若不成立,请说明理由。 展开
(AD<DB),点E是上任意一点(点D、B除外),直线CE交⊙O于点F,连结AF与直线CD交于点G。(1)求证:AC2=AG·AF;(2)若点E是AD上任意一点(点A除外),上述结论是否仍成立?若成立,请画出图形并给予证明;若不成立,请说明理由。 展开
展开全部
证明:
如图1,连接BC、BF
因为AB是直径
所以∠ACB=∠AFB=90°
因为CD⊥AB
所以∠ADC=∠ADG=90°
所以∠ACB=∠ADC,∠AFB=∠ADG
又因为∠CAD=∠BAC,∠DAG=∠FBA
所以△ACD∽△ABC,△ADG∽△AFB
所以AC/AB=AD/AC,AD/AF=AG/AB
所以AC^2=AD*AB,AD*AB=AG*AF
所以AC^2=AG*AF
若点E是线段AD上的任意一点,上述结论仍然成立
证明(与上面过程一样):
如图2,连接BC、BF
因为AB是直径
所以∠ACB=∠AFB=90°
因为CD⊥AB
所以∠ADC=∠ADG=90°
所以∠ACB=∠ADC,∠AFB=∠ADG
又因为∠CAD=∠BAC,∠DAG=∠FBA
所以△ACD∽△ABC,△ADG∽△AFB
所以AC/AB=AD/AC,AD/AF=AG/AB
所以AC^2=AD*AB,AD*AB=AG*AF
所以AC^2=AG*AF
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询