高一数学必修3 急!!!!!!!!!!!!!!!!!

在长度为a的线段内任取亮点将线段分成三段,求它们可以构成三角形的概率... 在长度为a的线段内任取亮点将线段分成三段,求它们可以构成三角形的概率 展开
匿名用户
2011-02-13
展开全部
最长那条设为L
L超过或等于0.5a时,不能构成三角形
最长那条肯定L>=a/3,
无论构成三角形与否,L所有可能的取值为:a/3=<L<a

能构成三角形时,L的取值为:a/3 <= L < a/2
概率为:
P=(a/2-a/3)/(a-a/3)=1/4

参考:

设线段(0,a)任意折成三段长分别为x,y,a-x-y,显然有x>0,y>0,a-x-y>0,满足这三个约束条件的(x,y)在平面直角坐标系中的可行域为一个直角三角形,其面积为:(1/2)a^2.
三段长能构成三角形的条件是:任意两边之和大于第三边,也就是:
x+y>a-x-y,a-x-y+x>y,a-x-y+y>x同时成立
即 x+y>a/2,y<a/2,x<a/2同时成立
满足x+y>a/2,y<a/2,x<a/2同时成立的(x,y)在平面直角坐标系中的可行域也为一个直角三角形,其面积为:(1/8)a^2
故此三段能构成三角形的概率为:p=[(1/8)a^2]/[(1/2)a^2]=1/4=0.25
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式