高中数学函数,好难!帮帮忙!
设函数f(x)=(4x^3)+(ax^2)+bx+5在x=3/2和x=-1时有极值。1求函数解析式2求函数的单调区间求解答过程,谢谢...
设函数f(x)=(4x^3)+(ax^2)+bx+5在x=3/2和x=-1时有极值。
1 求函数解析式
2 求函数的单调区间
求解答过程,谢谢 展开
1 求函数解析式
2 求函数的单调区间
求解答过程,谢谢 展开
展开全部
解析:
1、函数在两点有极值,即函数的导数在那两点等于0 。
f(x)=(4x^3)+(ax^2)+bx+5 可得
f'(x)=12x²+2ax+b
将(3/2,0)、(-1,0) 代入上式,可得
a= -3, b= -18
所以函数的解析式为 f(x)=(4x^3)+(-3x^2)-18bx+5
2、由1可知 f'(x)=12x²-6x-18
结合f'(x) 图像可知,
在 (-∞,-1)和(3/2,+∞)上,f‘(x)>0;
在(-1,3/2)上,f’(x)<0;
所以,函数f(x)的单调递增区间是 (-∞,-1)和(3/2,+∞)
单调递减区间是 (-1,3/2)
希望可以帮到你、
不明白可以再问、
1、函数在两点有极值,即函数的导数在那两点等于0 。
f(x)=(4x^3)+(ax^2)+bx+5 可得
f'(x)=12x²+2ax+b
将(3/2,0)、(-1,0) 代入上式,可得
a= -3, b= -18
所以函数的解析式为 f(x)=(4x^3)+(-3x^2)-18bx+5
2、由1可知 f'(x)=12x²-6x-18
结合f'(x) 图像可知,
在 (-∞,-1)和(3/2,+∞)上,f‘(x)>0;
在(-1,3/2)上,f’(x)<0;
所以,函数f(x)的单调递增区间是 (-∞,-1)和(3/2,+∞)
单调递减区间是 (-1,3/2)
希望可以帮到你、
不明白可以再问、
展开全部
1.就是说f(x)的导函数值在x=3/2和x=-1时为零.......其余的你应该会了,解方程组而已了
2.解析式已经有了这个就不是问题了
2.解析式已经有了这个就不是问题了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
有极值==>f(x)`=0 的解x=3/2和x=-1
f(x)`=12x^2+2ax+b=0
a=-3,b=-18
(-1,3/2)单调递减
f(x)`=12x^2+2ax+b=0
a=-3,b=-18
(-1,3/2)单调递减
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1】f(x)的导函数g(x)=12x^2+2ax+b 在x=3/2和x=-1时=0
联立g(3/2)=0;g(-1)=0
得解析式。
2】由导函数与单调性的关系得
增区间为(-OO,-1),(3/2,+OO)
联立g(3/2)=0;g(-1)=0
得解析式。
2】由导函数与单调性的关系得
增区间为(-OO,-1),(3/2,+OO)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f'(3/2)=f'(-1)=0
则3a+b+32=0
-2a+b+17=0
解得:a=-3 b=-23
后面的单调区间就会了吧?…
则3a+b+32=0
-2a+b+17=0
解得:a=-3 b=-23
后面的单调区间就会了吧?…
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询