1个回答
展开全部
首先由配方得:
f(x)=-x2+4x-1=-(x-2)^2+3
则这个函数的对称轴为:x=2
因为:x属于[t,t+1]的最大值为g(t)。
所以:
g(t)=-(t-2)^2+3
g(t+1)= -(t-1)^2+3
又因为,不论是g(t)或g(t+1)的值它们都是非负的。
因为最大值为g(t)
所以g(t)〉g(t+1)
则-(t-2)^2>-(t-1)^2
所以t>=1.5
因为函数=-(x-2)^2+3在x>=2为减函数
又因为t>=1.5
为了取得最大值g(t)
t只能等于2
则g(t)=3
f(x)=-x2+4x-1=-(x-2)^2+3
则这个函数的对称轴为:x=2
因为:x属于[t,t+1]的最大值为g(t)。
所以:
g(t)=-(t-2)^2+3
g(t+1)= -(t-1)^2+3
又因为,不论是g(t)或g(t+1)的值它们都是非负的。
因为最大值为g(t)
所以g(t)〉g(t+1)
则-(t-2)^2>-(t-1)^2
所以t>=1.5
因为函数=-(x-2)^2+3在x>=2为减函数
又因为t>=1.5
为了取得最大值g(t)
t只能等于2
则g(t)=3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询