数学问题!(关于因式分解)

因式分解中有一种方法好像叫“斜乘竖加”,可以用来分解很复杂的式子。但我不清楚具体用法。望各位高手不吝赐教!谢谢!回1楼:那么类似9b^3+6b^2-3b-28=0这样的式... 因式分解中有一种方法好像叫“斜乘竖加”,可以用来分解很复杂的式子。但我不清楚具体用法。
望各位高手不吝赐教!
谢谢!
回1楼:
那么类似9b^3+6b^2-3b-28=0这样的式子如何用十字相乘分解呢?
谢谢,辛苦了!
展开
 我来答
南捣宗档bB
2011-02-14 · TA获得超过1226个赞
知道小有建树答主
回答量:488
采纳率:0%
帮助的人:605万
展开全部
我用个简单的例子来说明吧
比如2x^2-1x-6要分解因式,
我们可以平方项的系数分解为1乘以2,把常数项分解为-2乘以3
写成一下形式
1 -2

2 3

对角相乘,即斜乘,然后相加,即竖加,1*3+2*(-2)刚好等于一次项系数-1
那么上式可以分解为两式的积,系数分别为上面四个数的第一行和第二行,即
原式=(1x-2)*(2x+3),
1,-2,2,3刚好是依次的系数。

其他复杂的式子只要可以变成A*()^2+B()+C都可以用这个方法。其中()可代表任何一个式子。

纯手打望能采纳谢谢
juebuditou9527
2011-02-14
知道答主
回答量:4
采纳率:0%
帮助的人:0
展开全部
那是最简单快捷的方法啊!例2X^2+X-1=0分解(2X-1)*(X+1)=0,将二次项2X^2分解为,2X(用A1表示),X(用A2表示)。常数项-1分解-1(用B1表示),1(用B2表示)。一次项系数O表示.此例为1。交叉相乘即:A1*B2,A2*B1。O=A1*B2+A2*B1即再相加。本例A1*B2=2X*1=2X,A2*B1=-X,相加O=X,所以分解成功。最关键是如何写。将四因子放到矩形中,左上脚A1,左下角A2,右下角B2,右上角B1,画对角线,对角线分别对着的两数相乘,上下边分别对的两加即为分解的因式(A1+B1),(A2+B2)。两因式相乘为0即为式子参前面已分解。多练几道就会了。象(X-2)(X-2)= 0就是些特殊的。专凭张嘴说说清楚,没演示,难啊!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
累雷猫
2011-02-20
知道答主
回答量:4
采纳率:0%
帮助的人:0
展开全部
因式分解
因式分解(factorization)

因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.而在竞赛上,又有拆项和添项法,待定系数法,双十字相乘法,轮换对称法等.

⑴提公因式法
①公因式:各项都含有的公共的因式叫做这个多项式各项的~.

②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.

am+bm+cm=m(a+b+c)

③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的. 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的.

⑵运用公式法

①平方差公式:. a^2-b^2=(a+b)(a-b)

②完全平方公式: a^2±2ab+b^2=(a±b)^2

※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.

③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2).

立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2).

④完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3

⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)]

a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m为奇数)

⑶分组分解法

分组分解法:把一个多项式分组后,再进行分解因式的方法.

分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式.

⑷拆项、补项法

拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形.

⑸十字相乘法

①x^2+(p q)x+pq型的式子的因式分解

这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p q)x+pq=(x+p)(x+q)

②kx^2+mx+n型的式子的因式分解

如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么

kx^2+mx+n=(ax b)(cx d)

a \-----/b ac=k bd=n

c /-----\d ad+bc=m

※ 多项式因式分解的一般步骤:

①如果多项式的各项有公因式,那么先提公因式;

②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;

③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;

④分解因式,必须进行到每一个多项式因式都不能再分解为止.

(6)应用因式定理:如果f(a)=0,则f(x)必含有因式(x-a)。如f(x)=x^2+5x+6,f(-2)=0,则可确定(x+2)是x^2+5x+6的一个因式。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式