请教高数求极限问题,满意加分!!!lim(x→∞)〖(√(1+tanx )-√(1+sinx ))/(x√(1+〖(sin
能不能用等价无穷小替换啊?加减什么时候能用等价无穷小替换啊?等待高手!!maclaurin公式貌似更加复杂了!!有没有简单点的啊!等价无穷小替换加减项到底什么时候能替换啊...
能不能用等价无穷小替换啊?加减什么时候能用等价无穷小替换啊?等待高手!!
maclaurin公式貌似更加复杂了!!有没有简单点的啊!等价无穷小替换加减项到底什么时候能替换啊!!
补充一下:不好意思,那个n应该改成X趋向于0 展开
maclaurin公式貌似更加复杂了!!有没有简单点的啊!等价无穷小替换加减项到底什么时候能替换啊!!
补充一下:不好意思,那个n应该改成X趋向于0 展开
3个回答
展开全部
也可以这样做:
分子上有理化
分母上用等价无穷小代换:(1+x)^α-1~αx,则√[1+(sinx)²]-1 ~ 1/2·(sinx)²
题目中,应该x→0吧,否则等价无穷小不好用
原式=lim [√(1+tanx)-√(1+sinx)]·[√(1+tanx)+√(1+sinx)]/[x·1/2·(sinx)²·√(1+tanx)+√(1+sinx)]
x→0
=lim (tanx-sinx)/[x·1/2·x²·(1+1)]
x→0
=lim sinx·(1-cosx)/x³·cosx
x→0
=lim sinx·1/2·x²/x³·1
x→0
=1/2
用maclaurin公式就是计算复杂,思路上简单;用等价无穷小时要构造,但能简便计算。
基本上,等价无穷小替换加减项是不可以的,只能在乘(除)号相乘的项中整体替换。
PS:希望我的解答对你有所帮助!
分子上有理化
分母上用等价无穷小代换:(1+x)^α-1~αx,则√[1+(sinx)²]-1 ~ 1/2·(sinx)²
题目中,应该x→0吧,否则等价无穷小不好用
原式=lim [√(1+tanx)-√(1+sinx)]·[√(1+tanx)+√(1+sinx)]/[x·1/2·(sinx)²·√(1+tanx)+√(1+sinx)]
x→0
=lim (tanx-sinx)/[x·1/2·x²·(1+1)]
x→0
=lim sinx·(1-cosx)/x³·cosx
x→0
=lim sinx·1/2·x²/x³·1
x→0
=1/2
用maclaurin公式就是计算复杂,思路上简单;用等价无穷小时要构造,但能简便计算。
基本上,等价无穷小替换加减项是不可以的,只能在乘(除)号相乘的项中整体替换。
PS:希望我的解答对你有所帮助!
展开全部
采用以下的近似的精度,经过一系列的运算可以得到。这里的o()是小o
tanx=x+x^3/3+o(x^3)
sinx=x-x^3/6++o(x^3)
sqrt(1+x)=1+x/2-x^2/8+o(x^2)
经过漫长的计算,答案为1/2
还有n-> inf应该改成x->0
tanx=x+x^3/3+o(x^3)
sinx=x-x^3/6++o(x^3)
sqrt(1+x)=1+x/2-x^2/8+o(x^2)
经过漫长的计算,答案为1/2
还有n-> inf应该改成x->0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
不如用maclaurin公式试试
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询