已知一个正比例函数和一个一次函数的图像交于点p(-2,2),且一次函数的图象与y轴的交点Q的纵坐标为4
7个回答
展开全部
(1)设正比例函数为y=k1x( k1≠0).
一次函数为y=k2x+b(
k2≠0,b≠0).
将pP(-2、2)代入y=k1x,则K=-1.
∴y=-x.
将P(-2、2)代入y=k2x+b,
则2=-2k2+b.
又一次函数图象与y轴的交点纵坐标为4,
∵b=4,
∴2=-2k2+4,则k2=1.
∴y=x+4为所求的一次函数;
(2)Q(0,4)
|PQ|²=(-2-0)²+(2-4)²=8,|OP|²=(-2)²+2²=8
|PQ|=2√2,|OP|=2√2
∴△PQO周长C=|PQ|+|OP|+|OQ|=2√2+2√2+4=4+4√2.
P(-2,2) Q(0,4)
∴h的绝对值=2 OQ=4
∵S△PQO=OQ×h的绝对值÷2
∴S△PQO=4×2÷2
=4
一次函数为y=k2x+b(
k2≠0,b≠0).
将pP(-2、2)代入y=k1x,则K=-1.
∴y=-x.
将P(-2、2)代入y=k2x+b,
则2=-2k2+b.
又一次函数图象与y轴的交点纵坐标为4,
∵b=4,
∴2=-2k2+4,则k2=1.
∴y=x+4为所求的一次函数;
(2)Q(0,4)
|PQ|²=(-2-0)²+(2-4)²=8,|OP|²=(-2)²+2²=8
|PQ|=2√2,|OP|=2√2
∴△PQO周长C=|PQ|+|OP|+|OQ|=2√2+2√2+4=4+4√2.
P(-2,2) Q(0,4)
∴h的绝对值=2 OQ=4
∵S△PQO=OQ×h的绝对值÷2
∴S△PQO=4×2÷2
=4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1)解:设y=k1x(k≠0)
∵点P(-2,2)在该直线上
∴-2k=2
k=-1
∴y=-x
设y=k2x+b(k≠0)
∵点P(-2,2)在该直线上且此函数图像与y轴交点Q的纵坐标为4
∴{-2k+b=2 b=4
解得:k=1 b=4
∴y=x+4
(2)Q(0,4)
|PQ|²=(-2-0)²+(2-4)²=8,|OP|²=(-2)²+2²=8
|PQ|=2√2,|OP|=2√2
∴△PQO周长C=|PQ|+|OP|+|OQ|=2√2+2√2+4=4+4√2.
P(-2,2) Q(0,4)
∴h的绝对值=2 OQ=4
∵S△PQO=OQ×h的绝对值÷2
∴S△PQO=4×2÷2
=4
∵点P(-2,2)在该直线上
∴-2k=2
k=-1
∴y=-x
设y=k2x+b(k≠0)
∵点P(-2,2)在该直线上且此函数图像与y轴交点Q的纵坐标为4
∴{-2k+b=2 b=4
解得:k=1 b=4
∴y=x+4
(2)Q(0,4)
|PQ|²=(-2-0)²+(2-4)²=8,|OP|²=(-2)²+2²=8
|PQ|=2√2,|OP|=2√2
∴△PQO周长C=|PQ|+|OP|+|OQ|=2√2+2√2+4=4+4√2.
P(-2,2) Q(0,4)
∴h的绝对值=2 OQ=4
∵S△PQO=OQ×h的绝对值÷2
∴S△PQO=4×2÷2
=4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询